
Text Analysis via Binomial Tails
Omid Madani, omadani@cisco.com

ABSTRACT
We show that several tasks in text processing, in particular co-
occurrence analysis, term weighting in documents, and document
similarity, can be modeled by the binomial tail. The tail yields easy
to interpret significance scores, and can make finding a good cut-off
threshold simpler, or improve ranking tasks and similarity spaces.
Because the tail can be efficiently approximated, it is a basic tool
that should find applications in text analysis.
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1 INTRODUCTION
The binomial is a simple model that arises in the statistical analysis
of basic phenomena in numerous domains. In particular, the tail
of the binomial is a natural fit to bounding the probability of an
extreme event in many settings (“extreme” relative to the binomial
modeling). However, the tail involves a sum, of a count to a maxi-
mum possible, which makes it inefficient to use. Fortunately, there
is an efficient analytic approximation [2, 3], both an upper and
lower bound, that is particularly suited for the range of tiny prob-
abilities that is often the case in various problems. This fact may
have been unknown in the datamining and information retrieval
and natural language communities, and we seek to highlight the
potential applications here.

We explore the use of the binomial tail to derive statistical con-
fidences for several text analysis tasks. As will be seen, the tail
can be applied to a number of problems, such as term association
via co-occurrence, weighting terms in documents, and term or
document similarity, and because it can be efficiently computed
(approximated), and offers well understood statistical confidence se-
mantics, this points to its potential for simplifying thresholding and
improving ranking, vector representations, and similarity spaces
for various downstream tasks such as clustering and classification.
Our prior work explored the tail for community analysis in social
networks [11]. As we will see, there are a number of ways to model
a task via the tail, and what we present is a brief exploration of the
possibilities. We view the tail as a basic principled tool that offers
another lever and dimension of control for text processing.

The next section defines the binomial tail and presents its ap-
proximation, and describes a few properties of the tail and the
approximation. The following sections develop a few applications
and report on preliminary experiments: Section 3 explores the co-
occurrence application, and Section 4 and the appendix explore
document representation (term weighting) and similarity.

2 THE BINOMIAL TAIL
The binomial tail, Tail(p,n,k ), captures the probability that, in
tossing a weighted two-sided coin (heads or tails), with probability
p of heads, out of n trials or tosses (independent, identical), k or

more heads is observed. It is given by the following sum:

Tail(p,n,k ) =
∑

k≤i≤n

(
n

i

)
pi (1 − p)n−i (1)

In the applications of the tail, we are interested in how low the
tail is, thus how far in a probabilistic sense the observed event E of
interest (E = (p,n,k )) is from a simple random model. In particular,
the observed k as a proportion of n, or q = k

n , can be substantially
higher than the probability p would imply (p is the ’expected’ pro-
portion according to the model). The higher q = k

n , the lower the
tail. The count-based event of interest can be the number of times
a term occurs in a document or the number of times two terms co-
occur nearby, and so on. Candidate events whose corresponding tail
probabilities are not sufficiently low can be ignored or dropped, and
the remaining could be ranked by (statistical) confidence,1 defined
as 1 − Tail(p,n,k ).

While Equation 1 is a simple computation, it is inefficient to
compute for tens of thousands of events and beyond (term co-
occurrences, etc.) specially when2 n ≫ k ≥ 1. The following upper
and lower bounds on the tail work well, and furthermore, shed light
on the properties of the tail:

1
√
2n

U ≤ Tail(p,n,k ) ≤ U , (2)

whereU (the upper bound) is:

U = exp(−nKL(q | |p)),where q =
k

n
, (3)

and KL(), is the (asymmetric) relative entropy function (or Kullback
Leibler divergence) [16]: KL(q | |p) = q ln q

p + (1 − q) ln 1−q
1−p , where

ln() denotes the natural logarithm function (note: U√
2n

in Eq. 2
is the lower bound). The (log) ratio of the observed to expected
proportion, the intensity of the event, log q

p , is the same as pointwise
mutual information (pmi) in the co-occurrence analysis of the next
section. We often use the negative log base 10 of the above upper
and lower tail probabilities,3 and take the average of the lower and
upper bounds for scoring:

l (E) = dKL(
k

n
| |p)/ ln(10) (lower score (of event E)) (4)

u (E) = l (E) + 0.5 log10 (2n) (upper score)

Since we use log base 10, the scores 1, 2, 3, · · · correspond re-
spectively to chance (tail) probabilities of 0.1, 0.01, 0.001, · · · thus
a score of 1 corresponds to a fairly weak confidence (0.1 p-value,
confidence 90%), and each successive increment implies 10 times
more significance, and scores around 2 (99% confidence) and higher
indicate increasingly good confidence.
1Confidence that the event is not governed by the random model (chance).
2In several special cases, e.g.whenn is small, exact or nearly exact tail can be computed.
De Moivre’s (Stirling’s) approximation can be used for the factorial terms in

(
n
i

)
[5, 13].

3Akin to Richter scale for measuring the power of earthquakes
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We make use of two properties from the recent work applying
the tail to derive significance of communities in social graphs [11]:

(1) The score is increasing in n (evidence/support) and in log q
p .

(2) The approximation quality, such as relative error, improves
with increasing score.

Point (1) above, i.e. the dependence on both the number of trials
(support) and the intensity (logarithmic) can be deduced from the
upper and lower bound formulae [11]. It can be verified that the
relative error of approximation is less than 10% when n ≥ 50 and
KL() ≥ 0.5 (and rapidly shrinks as n increases). For small values
of n, one could compute the score exactly. All our co-occurrence
experiments of next section (e.g. on over 100k abstracts), written in
Python, finished around or under a minute.

3 CO-OCCURRENCE ANALYSIS
Term co-occurrence analysis finds a number of applications in-
cluding phrase discovery (meaningful bigrams), term expansion
during searching, sparse sense representations, and topic discov-
ery [4, 6, 12, 14]. Here, we investigate processing of immediate
co-locations which has applications to meaningful phrase discov-
ery and query expansion. We also introduce notation next (with
examples) as we explain this application of the binomial tail.

Notation and an example. Let the wordw1 occur F(w1) times
(frequency ofw1) in the corpus, andw2 to immediately followw1
F(w2,w1) times. Let the prior of w2 be P(w2), where the (empir-
ical) prior of a word w is defined as P(w ) =

F(w )
N , where N =∑

wi F(wi ).4 As a simple example, if the corpus has two documents,
with document d1, being the sequence d1 = (w1,w3,w1) (thus
|d1 | = 3 and note N =

∑
wi F(wi ) =

∑
di |di |), and document

d2 being d2 = (w1,w2,w1,w2), then F(w1) = 4, P(w1) =
4
7 , and

F(w2,w1) = 2 (w2 followsw1 twice, in document d2).
Our binomial tail formulation is simply

Tail(P(w2), F(w1), F(w2,w1)) (or n = F(w1), and k = F(w2,w1)).
The lower it is, we have more confidence thatw2 followsw1 with
probability exceeding the background prior P(w2).

A popular statistical approach for term co-occurrence is the
pointwise mutual information technique (pmi) [6], defined as the
log of the ratio P (w2 |w1 )

P (w2 )
, i.e. probability that the wordw2 follows

w1 (the conditional probability) over the unconditional probability
or prior ofw2.

There is some similarity between the two scores as the binomial
incorporates the intensity (here the pmi), as a component.We report
the agreement of the top 5 ranked co-occurring terms for each term
w1, distinguished as a function of a few ranges for frequency ofw1.
The experiments are on the NSF abstracts dataset (120k documents)
[8] and [10] (test partition, 7.5k documents) (similar patterns were
observed on a few other datasets). Table 1 provides statistics on
the agreement rates between pmi and binomial, and Fig. 1 shows a
few scores and co-occur counts of top ranked co-occurring terms
given a few initial example terms. We observe that specially for
higher frequency terms w1 the top term picked also have higher
co-occurrence counts via the binomial tail.

4P(w) is the (empirical) probability that wordw is observed when a random position
in the corpus (viewed as concatenation of documents) is examined.

dataset Newsgroups NSF Abstracts
Jaccard on top 5 term-sets returned by each method
1000 < F(w1) 0.04 0.05

500 < F(w1) ≤ 1000 0.14 0.13
100 < F(w1) ≤ 500 0.46 0.34
50 < F(w1) ≤ 100 0.80 0.65
co-occurrence count of top term picked (on average)

binomial, 1000 < F(w1) 433 794
pmi, 1000 < F(w1) 5 15

binomial, 500 < F(w1) ≤ 1000 94 127
pmi, 500 < F(w1) ≤ 1000 8 9

binomial, 100 < F(w1) ≤ 500 30 40
pmi, 100 < F(w1) ≤ 500 7 7

binomial, 50 < F(w1) ≤ 100 13 13
pmi, 50 < F(w1) ≤ 100 7 5

Table 1: Runs on theNewsgroups (on test partition, 7.5k docs,
N =1.6mil term occurrences) and NSF abstracts datasets
(120k docs, 24mil occurrences). The first few rows display
the average agreement (Jaccard: |S1∩S2 |

|S1∪S2 |
) among the top 5

ranked by each method, and the next few report on co-
occurrence count of the top word returned by each method
(broken by frequency range). PMI picks low frequency
terms (yielding low co-occurrence counts) and the difference
in top 5 grows with frequency ofw1.

It is well known that pmi is sensitive to low counts (of w2) as
it does not include evidence or support, and a number of variants
have been proposed, such as raising the numerator of pmi, when
written in alternative form P(w1,w2 )

j

P(w1 )P(w2 )
, to higher powers j = 2

(pmi2) or j = 3 (pmi3)[7]. This makes it harder to interpret and can
yield negative scores but does favor more common co-occurrences
[14]. The binomial approach naturally incorporates the support,
and as we observe here, tends to pick phrases with significantly
higher co-occurrence counts. With j = 2 or 3, the top-ranked get
closer to binomial, but still significantly different: average Jaccard
similarities on most frequent (> 1000) to less frequent terms (100
to 500) range go from 0.3, to 0.5 between binomial and pmi2, and
from 0.7 to 0.6 between binomial and pmi3, and the pmi variants
continue to rank somewhat smaller co-occurrences on top.

Discussion and Some Extensions.. As seen in the examples,
the tail can pick very frequent w2 with high priors, since they
provide the most evidence (see below for alternatives). Although
the ratio P (w2 |w1)/P (w2) is already a component of the binomial
tail, only obtaining the confidence that the condition probability
is higher than the (tiny) prior may not be sufficiently informative,
especially once score exceeds certain high values (e.g. say 3 corre-
sponding to 99.9%). Therefore, we could require a further constraint
on the prior or on the pmi ratio (intensity).

A direct way to constrain the pmi using the tail is as follows:
in the invocation for the tail, we can query with a p higher than
the prior. For instance, we can ask for the confidence that the
conditional probability is at least twice the prior, 2P(w2), or 10x
or 100x the prior, and/or we can constrain the conditional with
absolute bounds as well, such as p = max(0.01, 10P(w2)) (i.e. , the
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Ranked by tail significance, for "role"
1. 5303.6 1.0 "role of" co=7455 c1=15655 c2=1155547
2. 3518.5 1.1 "role in" co=4518 c1=15655 c2=527997
3. 397.4 2.5 "role played" co=195 c1=15655 c2=1035
4. 211.1 1.2 "role models" co=273 c1=15655 c2=28343
5. 135.6 0.6 "role that" co=454 c1=15655 c2=166174

Ranked by pmi, for "role", pmi (pow=1.0)
1. 6.6 3.2 "role misocyclone" co=2 c1=15655 c2=2
2. 6.6 3.2 "role Dike" co=2 c1=15655 c2=2
3. 6.3 3.0 "role Tough" co=2 c1=15655 c2=3
4. 6.0 2.9 "role MDN" co=2 c1=15655 c2=4
5. 9.7 2.6 "role inthe" co=4 c1=15655 c2=16

Ranked by pmi2, for "role", pmi2 (pow=2.0)
1. 0.0 -2.5 "role of" co=7455 c1=15655 c2=1155547
2. 90.4 -2.6 "role in" co=4518 c1=15655 c2=527997
3. 205.0 -2.6 "role played" co=195 c1=15655 c2=1035
4. 9.3 -3.8 "role models" co=273 c1=15655 c2=28343
5. 4.6 -3.9 "role misocyclone" co=2 c1=15655 c2=2

pmi3 on "role": "of"(-6),"in"(-6.3),"played","models","that"

"sperm" (F=702) (co-occurrence counts shown)
binomial: "egg"(co=41),"competition"(22),"whale"(7),

"release"(11),"axoneme"(6)
pmi: "Chemoattractant"(2),"Bos"(2),"fertilizes"(4),

"offensive"(2),"chemoattractant"(2)
pmi2: "fertilizes"(4),"egg"(co=41),"Chemoattractant"(2),

"Bos"(2),"offensive"(2)
pmi3: "egg"(co=41),"fertilizes"(4),"competition"(22),

"axoneme"(6),"whale"(7)

"develop" (F=27093) (co-occurrence counts shown)
binomial: "a"(co=7621),"new"(1381),"an"(1580),

"methods"(348),"efficient"(160)
pmi: "tetraamidomacrocyclic"(2),"spaceport"(2),

"superconvergent"(2),"Cyborgs"(2),"hi2h"(2)
pmi2: "a"(7621),"new"(1381),"an"(1580),

"methods"(348),"and"(2020)
pmi3: "a"(7621),"new"(1381),"an"(1580),

"and"(2020),"the"(1366)

Figure 1: Top 5 bigrams for w1 ∈ {"role", "sperm", and
"develop"}, using binomial and pmi variants (NSF abstracts
data): in each line for "role", the tail score and pmi (both
log10) as the 1st two columns, followed by the co-occurrence
count and term counts (F(w )). Plain pmi is attracted to very
low frequencies. Binomial scores have an interpretation (as
confidence, or a distance from random chance).

conditional probability should be 10x the prior or 0.01 whichever
is higher). The prior multiplier can be a function of how high the
prior is (e.g. , 2x for most frequent terms, 100x for least). Finally,
we could compute the highest pmi ratio at which the confidence
remains at fairly high threshold, such as 99.9% (see next section).
Furthermore, we can do sensitivity analysis or render the confidence
more conservative, for example by subtracting say a 1 from the
observed co-count k = F(w2,w1).

4 DOCUMENT REPRESENTATION
Document representation is a fundamental problem that affects the
quality and efficiency of down-stream tasks, including search and
retrieval, clustering, and classification. We briefly explore binomial
significance for term weighting, beginning with two (symmetric)
formulations of the tail score, plus use of intensity:
• Document centric tails, or weights as importance of
terms to a document: For a document with |d | term oc-
currences, we imagine sampling n = |d | times (trials), where
term w is picked with probability p = F(w )/N , and we ob-
serve k = F(w,d ) occurrences of w in the document.5 The
weight of a termw ind is determined by Tail( F(w )

N , |d |, F(w,d )).
• Term centric tails, or weights as importance of doc-
uments to a term: Imagine a word w in every trial of
n = F(w ) many, picks a document to occur in, where it picks
document d with probability p = |d |/N in each trial, and we
observe F(w,d ), occurrences ofw , in document d . The tail is
then: Tail( |d |N , F(w ), F(w,d )).
• Intensity.Use intensity after possibly thresholding by a con-
fidence derived from above (e.g. require 99% confidence), as
intensity alone does not account for low evidence (see Table
3, and previous section). Thus, the weight of a (remaining)
term is log2

q
p , where q = k/n.

Note that in the above tails, akin to tfidf [9, 15], both the corpus
frequency of terms (the more frequent terms are often less signif-
icant) and the number of term occurrences in the document are
taken into account, as well as the entire document length (akin to
length normalization). The tfidf measure is somewhat heuristic and
attempts have been made to connect it to information theoretic
principles [1], and weighting (in-part) by the tail provides a more
principled alternative.

Figure 2 shows a portion of an example abstract and a few top
words ranked based on term-centric, tfidf weights, and intensity
weightings, to get a sense of the range of weights and the top rank-
ings. For tfidf weighting, we used tf=log2 (F(w,d )+ 1) multiplied by
idf, idf=1 + log( |D |df (w ) ), where |D | is the number of documents in
the corpus), and d f (w ) is the number of documents thatw appears
in. When we rank terms of a given document by various weighting
schemes, we find high correlation between the different weighting
schemes, e.g. , on NSF abstracts, we get an average Spearman rank
correlation of 0.99 between the two tail variants above, 0.97 between
the document-view weighting and tfidf, and 0.94 document-view
weighting and intensity.

A natural question is the fraction of terms that reach a signifi-
cance level. In the NSF abstracts data, about half of the on average
70 unique terms in an abstract are deemed insignificant at 99%, and
about 2/3 do not reach the 99.9% threshold. Thus the reduction
can be substantial. We observe similar numbers on the newsgroups
dataset, shown in Table 2.

We assess term weights derived as a function of the binomial
scores for document similarity. The newsgroups dataset has 20 class
labels (20 newsgroups, roughly equal size partitioning), and we label
a document pair positive iff both pair pairs are from the same class.

5We are using same notation of Sec. 3. |d | is the number of non-unique term occur-
rences, and F(w, d ) ≥ 0 is number of occurrences ofw in document d .
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The Reunion hot spot has been active over at least the past
70 M.y. and has left its mark on the Indian and African
tectonic plates of the Indian Ocean. On the African plate, the
Mascarene ridge is coincident with a significant positive geoid
anomaly, similar to the Hawaiian swell, indicating that the
apparent compensation of the topographic load ...

By tfidf: (score=9.0,F(w,d)=2,F(w)=13,Hawaiian),(8.7,2,15,spot),
(8.5,2,22,anomaly),(8.4,2,28,compensation),(8.3,3,164,Indian),
(7.5,2,49,hot),(7.4,2,71,African),(6.9,1,1,geoid),
(6.6,1,2,Mascarene),(6.4,1,3,Reunion),(6.3,1,5,asthenosphere),
(6.2,2,186,Ocean),(6.1,1,5,swell),(6.0,2,247,deep),
(5.8,1,9,coincident),(5.7,2,386,heat)...

By binomial:(score=6.3,F(w,d)=3,Indian),(6.2,2,Hawaiian),
(6.1,2,spot),(5.8,2,anomaly),(5.6,2,compensation),
(5.1,2,hot),(4.7,2,African),(4.1,1,geoid),(4.0,2,Ocean),
... (1.4,1,determine),(1.4,1,based),(1.4,2,as),(1.4,3,is),
(1.4,1,its),(1.4,1,methods),(1.3,2,with),(1.3,1,support),
(1.3,1,it),(1.3,1,other),...,(1.1,1,that),(0.0,3,to),
(0.0,3,of),(0.0,2,will),(0.0,3,and),(0.0,2,in)

By intensity:[(intensity=9.4,F(w,d)=1,geoid),(8.7,1,Mascarene),
(8.3,1,Reunion),(7.8,1,asthenosphere),(7.8,1,swell),
(7.5,2,Hawaiian),(7.3,2,spot),(7.2,1,coincident),
(7.0,2,anomaly),(6.8,1,Utilizing),(6.7,2,compensation),...

Figure 2: An example NSF abstract and the top terms as
ranked by tfidf, binomial and intensity. A few bottom terms
shown for binomial as well. Binomial and tfidf rankings
tend to highly correlate at top as both are sensitive to terms
with 2 or higher frequency in the doc (both in-document
count F(w,d ) and corpus frequency F(w ) of each term is
shown in the tfidf list). Observe that terms such as ’deter-
mine’, and ’support’ get relatively low confidence (binomial
score) in this corpus.

weight (score) threshold→ 0 1 2 3
NSF Abstracts 77 73 43 16
Newsgroups 144 128 54 22.5

Table 2: Average number of unique terms left per document
after thresholding the binomial significance scores (0=no
threshold, 1 = 90% confidence, 2 = 99%, 3 = 99.9%).

We conducted experiments on roughly 100k randomly picked6
document pairs, ranking the pairs by a few similarity methods,
shown in Table 3. A similarity score that scores all the positive
pairs higher than the rest yields an ideal ranking. We report maxf1
[17].7 Note that evaluating the ranking this way is an (imperfect)
measure of how good a term representation and a corresponding
similarity function is, as there can be both false positives and false
negative pairs (e.g. two documents inside a group may have no
relevance or semantic similarity to one another, and vice versa).
6We repeated this experiment more than 5 times (different 100k subsets) and the
deviation in maxf1 and average precision was small (less than 0.01) and the relative
performances of the methods do not change.
7Maxf1 is the score on the precision-recall curve where harmonic mean of precision
and recall is maximized.

The similarity score based on tfidf is the dot product of l2-normed
tfidf vectors (cosine), where tf=log2 (F(w,d ) + 1) multiplied by idf,
idf=1 + log( |D |df (w ) ), where |D | is the number of documents in the
corpus, and d f (w ) is the number of documents thatw appears in.
All other techniques first threshold a document (a vector) based on
the above term-view binomial score (threshold of 1, 2, or 3). The
’bool’ (boolean) similarity technique simply counts the terms in
common in the document pair (after thresholding) (ignores weights
or scores), while the ’score’ technique sums the minimum of the
pair of binomial scores for each term in common. The intensity (or
pmi) technique sums the minimum of the pair of intensity ratios
for each term in common.

We observe that the techniques improve over tfidf. The improved
performance of the bool technique along with others, with increas-
ing threshold, implies that a threshold of 1 (90% confidence) is too
low, as many noisy terms remain, but around 2 to 3 works relatively
better. The superior performance of intensity (after thresholding
by significance) is not without plausible explanation: intensity is a
measure of how much a term is special to a document and the more
such ’special’ terms two document have in common, the higher
their similarity should be. However, the binomial significance score
alone does not reflect this intensity directly.

It is interesting that with almost half the terms removed (per
document), the rankings appear to perform better than tfidf-cosine,
with significance-based techniques. We also note that we did not
attempt to normalize (adjust) for document size in computing sim-
ilarity, as the binomial modeling already takes that into account.
We have also observed that performing a product of the inten-
sities (rather than taking the minimum) performs better accord-
ing to above maxf1 criterion. More systematic experiments and
evaluations on additional datasets are needed to assess, for exam-
ple, whether similar confidence thresholds work well on different
datasets. It is also important to explore the representation for other
tasks, such as dimensionality reduction, clustering and supervised
learning. Finally, document similarity can be more directly modeled
by the binomial tail (Appendix A). We leave further exploration to
future work.

tfidf bool score intensity
maxf1, sig. threshold=1 0.184 0.126 0.151 0.185
maxf1, sig. threshold=2 0.184 0.187 0.194 0.205
maxf1, sig. threshold=3 0.184 0.180 0.180 0.186

Table 3: Ranking performance on a random sample of 100k
pairs of newsgroups documents, where a pair is positive iff
both documents are from the same newsgroup. We use sev-
eral document representations and similarity functions. All
the techniques except tfidf first drop terms below the bino-
mial significance threshold of 1, 2, or 3.

5 CONCLUSIONS
The binomial tail is a versatile tool for deriving significance effi-
ciently, and we explored a few applications. We hope that future
work furthers the applications and extends our understanding of
the tail’s properties and its relation to other techniques.
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A SIMILARITY VIA THE BINOMIAL TAIL
Here we describe a way of modeling the similarity between a pair
of documents as a binomial tail. Just as in Sec. 4, a symmetric ap-
proach can be formulated for term similarity. We will next describe
the approach and our simplifying assumptions to fit the binomial
to the task. On the ranking task on newsgroups of Sec. 4, this
similarity scores an improved maxf1 of above 0.22 (see Table 3),
and preliminary experiments on clustering (via community discov-
ery algorithms) provide some evidence that the similarity space
(the graph) induced can be better than what is achieved via cosine
similarity.

Description. One document, say d1 is given (fixed, or condi-
tioned on) and we ask if the other document is sampled at random
(i.e. , for each of its |d2 | positions, a term is drawn with probability
equal to its prior), what is the probability that we observe such
pattern of matches, ie the magnitude of the priors of matching
terms (how low they are) and the number of such matches? The
challenge is reducing the pattern of different matching priors to a
one dimensional similarity score (to a one-dimensional binomial
tail). We make a few simplifying assumptions: the algorithm sets up
a few (matching) events and takes the lowest probability (highest
scoring) one.

As shown in Algorithm 1, we use a range of probabilities around
a matching term’s prior P(w ), and within this range, we do not
distinguish whether the same term is matched multiple times or
different terms match. The range is determined by a ceiling prob-
ability, controlled by a parameter, the granularity multiple, α ≥ 1,
where we have found α = 2 to work well, the ceiling being αP(w )
(see discussion below).

As an example, say d1 has 6 terms,w1,w2, · · · , with priors 0.03,
0.06, 0.1, 0.11, 0.13, 0.15 respectively, and for simplicity assume
all occur once in d1. Assume d1 ∩ d2 = {w2,w4,w6} (3 terms in
common), and |d2 | = 8. Then the main loop of Algorithm 1 first
finds wordw2 in common, determines the upper ceiling to be α ×
0.06 = 0.12, with default α = 2, and there are two terms matches
in this range (given probability ceiling is set to 0.12), with success
probability set atp = 0.03+0.06+0.1+0.11 = 0.30, and it is a success
ifd2 picks any of these terms. There are two termmatches (assuming
eachmatching term occurs once ind2, thereforek = 2. From the first
time through the loop, we get binomial_score(p = 0.3,n = 8,k = 2).
The 2nd time through loop also adds w6 to the matches, k goes
to 3, and success becomes more likely with p = 0.58. nstays at 8
throughout. We take whichever binomial score is higher (the match
is more surprising).

Discussion. There are a number of design decisions to explore,
and we briefly discuss and motivate a few. As we decrease the
multiple α (minimum of 1.0), we increase granularity, but we may
get only onematching event, andmay ignorewordswith near priors
(that may ormay notmatch). Use ofα > 1 has a similar conservative
nature to using the tail (a tail uses a one-sided interval vs. using
a point or a smaller interval). On the other hand, if α is made too
large (coarse), the score loses its power, as words with a wide range
of probability are bundled together, and success probability can
reach or exceed 1.0. For simplicity of presentation, we did not set
a floor on the priors (in defining the set C), although that could
be done, and instead of taking the maximum, it may be sound or
beneficial, to add up the scores. Term correlations are not taken
into account (by binomial definition), however we have found that
removing terms that are (near) duplicates (which can be achieved
efficiently) can improve the similarity/ranking results. In addition
to exploring the effect of α and algorithmic variations, it would be
good to explore the extent to which the scores (the confidences)
are calibrated (i.e. whether two items, scoring over say 95%, are
deemed similar, at roughly 95%, by human raters?). Finally, there
may exist more sophisticated statistical models better suited to
modeling document similarity.

We note that Algorithm 1 can be implemented efficiently (similar
run-time cost to cosine), via the use of hash sets and maps, and
involves sorting (terms in a document), and linear scans of both
documents.

Algorithm 1: Similarity score, sim(), of two documents, d1 and
d2, via a reduction to the binomial tail. The required parameter
α ≥ 1, is the granularity (or coarseness) multiple. Assume wlog
|d1 | ≤ |d2 | or take min(sim(d1,d2), sim(d2,d1)).
1 O ← d1 ∩ d2, mark all ’unexamined’, sort ascending by prior.
2 score← 0 # The similarity score (binomial tail).
3 Take next unexamined wordw in sorted O :
4 C ← {t ∈ d1 |P(t ) ≤ α ∗ P(w )} # Terms (in d1), close prior.
5 p ←

∑
t ∈C P(t ) # prob. of ’hitting’ (any of) these terms.

6 k ←
∑
t ∈C min(F(t ,d1), F(t ,d2)) # Count of matches of C .

7 score← max(score,binomial_score (p, |d2 |,k))
8 Mark terms in C as examined.
9 return score
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