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ABSTRACT
Assertion-based verification is a technique to ensure that a micro-
electronic circuit design conforms to its specification and helps de-
tect errors early in the design process. These assertions are complex
and difficult to write since verification engineers must manually
translate a natural language specification to a formal assertion lan-
guage, such as SystemVerilog Assertions (SVA). SVA is a regular
language that can be compiled and automatically checked. This in-
curs significant costs in the hardware design and verification cycle
in terms of productivity and time, sometimes as much as 50% of the
hardware design costs. We propose a machine-learning approach
to alleviate this problem that automatically converts content in
English language specifications to SystemVerilog Assertions. Our
experimental results demonstrate an average precision of 64% on a
data set created from proprietary Integrated Circuit (IC) specifica-
tion documents.
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1 INTRODUCTION
The increasing complexity of IC designs in size and functionality
means that their specifications have evolved from telling designers
what to design, to account for verification needs as well. Conse-
quently, modern IC specification documents describe both desired
functionality as well as the verification plan and task breakdown.
A designer often works with only a small portion of the specifi-
cation to develop his assigned portion of the product. Verification
involves both the operating environment and the internal operation
of the IC. Hence, verification engineers developing the verification
environment, plan, tasks/items, and associated test-benches must
understand the entire specification. The problem is compounded
by the fact that the specification and associated supplemental doc-
umentation are often subject to changes that must be propagated
through the entire design/verification flow.

A primary task in the verification flow is that of translating veri-
fication items into formal language models (assertions or checkers).
These are written in hardware description languages such as Sys-
temVerilog [1] and used to either prove (using formal methods)
or check (using simulation) design properties. This is done under
formal assumptions about the environments specified for normal
operation of the IC. The complexities and manual work involved in
the aforementioned process can introduce a significant number of
errors that are costly to detect and fix.

We study the following problem – Given an English language
IC design specification, can we automatically a) identify sentences
corresponding to IC functional properties and b) translate them to
compileable, semantically correct SystemVerilog Assertions(SVA) ?

We propose a solution (called SpecToSVA) to the above problem
that uses Machine Learning (ML) and Natural Language Processing
(NLP). SpecToSVA is a human-in-the-loop system that automat-
ically translates text from IP specifications to formal assertions
in the SystemVerilog hardware description language. We assume
that there will be some error in the automatically generated SVA
statements. Therefore, we provide an interactive system that allows
users to correct errors in the system. These user-provided correc-
tions are used as batched training data to minimize the overall error
over time. This allows users to converge on desired precision for
translation. The benefits of the proposed system include:

• Reduced time to create assertions;
• Reduced error rate;
• Ability to learn and improve quality of results as the size of
the training data set increases.

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 describes in detail the components of the
SpecToSVA system. In Section 4 we present an experimental study
and evaluation of the proposed system.

2 RELATEDWORK
The earliest related work by Granacki et. al [6] [7] generates partial
hardware designs from natural language specifications by iden-
tifying a set of concepts and a textual pattern for each concept.
Any sentence which matches a textual pattern can be mapped to
structures in a design data structure defined by the authors – a
so-called slot-filling approach. Much of the current work in the lit-
erature emulates this approach in the translation of English natural
language specifications with varying levels of sophistication in the
analysis of the source natural language.

All prior-art related to the proposed approach that we are aware
of, applies some form of rule-based translation from English sen-
tences to SystemVerilog Assertions. For example, the approaches
in Fantechi et. al [5] and Holt et. al [9] transform the problem into
a direct translation problem by restricting the input English to a
constrained subset of English. The approaches described in Harris
et. al. relies on creating partial grammars that are defined by hand
[21], or through search techniques [8]. Other approaches like those
in Soeken et. al [20] [11] attempt to alleviate some of the manual
work involved in generating verification collateral from natural
language specifications by sentence grouping.

More closely related work is the approach by Zhao et. al. [21]
that creates a syntactic parse tree of English using the NLP toolkit



Figure 1: System architecture and proposed solution for each sub-problem including the execution flow.

[16]. Their approach attempts to locate subtrees associated with
important phrases heuristically, such as the antecedent and conse-
quent of an implication. Formal assertions are generated using a
recursive walk over the subtrees to fill a set of assertion templates
using a slot-filling method. The shortcomings of this approach be-
sides its heuristic nature are both the small set of templates leading
to limited forms of generated SystemVerilog, and the potentially
infinite set of rules and heuristics required to find matches between
semantic parts of target SVA templates and subtrees of the Eng-
lish parse tree. Similarly, Krishnamurthy et. al. [14] analyzes the
English parse tree to determine if a sentence can be translated to
SystemVerilog by a production rule guided slot-filling method.

3 SPECTOSVA APPROACH
SpecToSVA is a commercial system with an intuitive Software-as-
a-Service(SaaS) architecture, as shown in Figure 1(a), and a set of
components that allow users to upload documents, track changes,
and generate SVA assertions from uploaded documents. In addition,
users can manually correct the results of intermediate steps in the
translation and provide feedback on inaccuracies in the translation.
The offline component shown in Figure 1(b) is the central part of
the work described in this paper.

Our approach translates the high-level problem posed in the last
section to solving the following four distinct sub-problems in a
systematic flow as shown in Figure 1(b) – Target Sentence Detec-
tion, Sentence Analysis, Deep Neural Network (DNN) [19] model
training, and finally the actual translation. We also have a final
step for verifying the results from the translation and generating
curated data for the sentence analysis and model training steps to
improve quality of results over time. These are described in the
following sub-sections 3.1 to 3.4.

As in any natural language processing flow, we first parse and
extract all English sentences from a given IP design specification
documents and store it in an input format agnostic database. This
database serves as both a primary data-store and as a knowledge
base for the entire system. We use a normalized schema to store all
extracted information from the IP design specification documents,

such as the section/subsection headings with their relative hierar-
chy, English sentences, and text automatically extracted from tables
and figures.

In addition, basic tasks such as sentence detection, tokeniza-
tion, part-of-speech tagging, named-entity tagging, and key phrase
recognition are performed and the results of each task are aggre-
gated and stored as metadata per sentence. The metadata per sen-
tence also includes scope information such as captions, equations,
table headers, and formatted lists.

3.1 Sentence Classification
The sentence classification in SpecToSVA uses an ensemble of
atomic weak learners feeding a binary classifier as described by
Ratner et. al. [18]. The input to a weak-learner is an ordered set
of tokens, and the output is a binary label (to_be_translated or
not_to_be_translated). These weak learners comprise procedures
that use a range of techniques from regular expressions to rule-
based procedures over token spans.

We create training data manually from randomly sampled sen-
tences in documents marked for training. This training data is used
to train a machine-learning based binary classifier that classifies
a token-span through the ensemble of weak-learners to the ap-
propriate bucket. We use a random-forest classifier for this step,
following the standard methods of train/validation data split, train,
and hyper-parameter tuning for highest quality of results. In gen-
eral, any good binary classifier can be substituted in this step. We
then improve the quality of results in the previous step that may
be limited by the small size of initial training data by generating
additional training data based on the following two techniques:

(1) We find sentences that are closest to the initial training data
for the classifier using unsupervised machine learning based
clustering techniques. The clustering algorithm uses n-gram
similarity [13] as a distance metric for the clustering algorithm.
The sentences in each cluster are then manually curated for
validity and fed back to the training flow.

(2) We allow user-feedback at the system-level to correct mis-
classified sentences that are then fed back to the sentence clas-
sification flow as new training samples.
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3.2 Name Entity Recognition (NER) Detection
We used the popular open-source NLP package – Spacy [10], for
NER detection. We enhanced Spacy’s English model with additional
keywords/phrases that correspond to common terms and phrases
in the circuit design and verification vernacular and SVA language
reserved keywords to create a custom NER detector for our ap-
plication. Examples of such tokens are variable names, and their
semantics like clocks and resets, registers, bit-vectors, bit-fields,
Boolean logic, and temporal behavior such as transitioning from
one value to another over time. The interested reader is referred to
the SystemVerilog Language Reference Manual [1] for more details.
The details of our method are described as follows:
(1) We create a global set of labels that includes the full set of

keywords and operators in the SystemVerilog LRM [1], and any
NER tokens.

(2) We use heuristic methods to find noun phrases using meta-
information generated during sentence pre-processing. The
meta-information includes data from tokenization, chunking,
and part-of-speech (POS) tagging. We then use constituency
tree parsing to detect sequences of tokens (spans) that may have
semantic meaning.

(3) We use custom rule-based routines to tag detected spans in a
sentence with corresponding labels for each span. These rules
vary from simple regular expressions to heuristic combinations
of part-of-speech tags to mark a span with a specific label. In
addition, we also create manually tagged spans where no rule-
based mechanism can be created. These tagged spans are used
to create training data for the next step.

(4) We then train a custom Spacy NER detection model using a
word embedding to create a multi-label classifier that detects
and assigns token-spans to the appropriate label.

(5) This labelling or mapping between the English token spans to
SVA tokens and literals is stored in the document database and
is used in the final translation step.

3.3 Model Training
We use the English Language Parse (ELP) tree as the fundamen-
tal data-structure to generate the final translated SVA. We use the
structure of the English sentence as a guide to yield a parse schedule
using shift-reduce operations [2] to generate the SVA representa-
tion. We use the constituency tree created using the deep neural
network approach proposed by Kitaev et. al. [12], as a good approx-
imation of the parse tree for a sentence . We use a second neural
network model that uses an post-order traversal sequence of the
ELP tree tokens to train a model that creates a pointer state to help
traverse the ELP tree encoding in stack-order. The pointer state
produces a new state at every step of the tree traversal given the
current state of the traversal. This encodes a shift-reduce schedule
for the ELP tree. Given these models, we can train the network with
constituency trees from the sentences in our training data to create
a joint encoding of the ELP tree and a traversal that approximates
shift and reduce actions as described in [4].

Ourmethod enhances the Kitaevmodel output by post-processing
the constituency tree to mark sub-trees corresponding to detected
reserved keyword NER tags and replacing vernacular NER tags with
a special symbol – “OOV”. This is done using a straight-forward

post-order traversal of the ELP tree from the Kitaev model and
results in an enhanced ELP tree. This increases the probability that
the two learned embeddings (tree/pointer) will be able to repre-
sent the boundaries of phrases and sub-phrases with high accuracy.
This is shown in the example in Figure 2. The intuition behind the
necessity for this step is that many NERs and phrases in specifi-
cation documents depend on artificial names that are created by
IC design engineers for a specific IC. It is highly unlikely that they
will repeat across documents. As a result, the overall accuracy of
the embedding learned on a sampled training set tends to suffer.

We use tags of the form “(S1”, “(S2”, “(S3”, . . . , “(SN” to mark the
beginning of sub-phrases as opposed to current state-of-art [12]
that marks each boundary with the same tags e.g., “(S”, “)” to mark
begin and end of a sentence/sub-phrase. The beginning, “S” and
end “)”, demarcation tags of a sentence are left unchanged. The
training sequence to the probabilistic parser model is the enhanced
ELP tree tokens sequence as an post-order traversal instead of the
original constituency tree.

3.4 Translation to SystemVerilog Assertions
The final translation relies on the probabilistic shift-reduce schedule
generated from the enhanced ELP model described earlier. The
translation process uses the following steps:
• Given a sentence, we generate the enhanced constituency tree
with NER mapping.

• The enhanced constituency tree is converted to a sequence that
is input to the probabilistic parser.

• The probabilistic parser produces a sequence of shift-reduce
actions represented by pointer states as an implicit bottom-up
traversal equivalent to a stack of shift-reduce actions and a se-
quence of translated SVA keyword, OOV tokens, or an end of
sequence marker.

• We track shift actions for every token, by tracking the parent
and child constituency nodes in the tree. We also keep track of
the last generated OOV symbol.

• We execute shift actions until the parse predicts a reduce action,
which is characterized by one of the following: (1) We see an end
of sequence marker. Here the reduce action is to terminate the
translation with a semi-colon; or (2) We see an OOV marker. The
OOVmarker is mapped to its corresponding token span based on
the position of the OOV in the enhanced ELP. The OOV is then
translated to the appropriate SystemVerilog token span from the
NER mapping defined in section 3.2.

Figure 2: Illustration of constituency tree enhancement for
the sentence “AWID must remain stable when AWVALID is
asserted and AWREADY is LOW”.

3



## Input English Output SVA
01 IRESP remains stable when IVALID is asserted and IREADY is LOW. (ivalid && ! iready) |=>$stable (iresp)
02 IREQ is only permitted to change from HIGH to LOW when IACK is HIGH. $fell (ireq) |->iack
03 When transmit data is written to SPDR/SPDR_HA and when the transmit buffer

of SPDR/SPDR_HA is empty (data for the next transfer is not set), the SPI writes
data to the transmit buffer and clears the SPSR.SPTEF flag to 0.

((def_wr_spdr_spdr_ha) && (user_def_spdr_spdr_ha_empty) |->
(## user_def_tim01) $fell(sptef))

Table 1: Translations examples: English sentences to SVA

4 EXPERIMENTAL RESULTS
We implemented SpecToSVA as a commercial system that was used
by customers on their proprietary IC design specification docu-
ments to generate SVA translations. The results of the system were
validated by selected verification engineers from the customers IC
verification teams(s). We created training data from a public spec-
ifications such as the ARM AMBA 3 AXI Protocol Checker User
Guide [3] and from proprietary IC design specification documents.

Some example translations performed by SpecToSVA are shown
in Table 1. Note that the first two example translations are complete
and correct SVA expressions that do not require further modifica-
tion from the user. The third example in Table 1 is a more complex
sentence that requires user intervention for completion. We can
observe that the translation correctly infers that a delay needs to be
inserted before SPTEF signal goes to the value 0. SpecToSVA inserts
a tag user_def_tim01 since the translation does not know the exact
value of the delay. This indicates that the user needs to modify
the generated SVA to the correct value. The translation infers that
the phrase – the transmit buffer of SPFT/SPDR_HA is empty, is part
of the pre-condition for the value change on SPTEF. SpecToSVA
inserts a tag – user_def_spdr_spdr_ha_empty, since the exact logic
conditions for this phrase cannot be inferred from this sentence
alone. This indicate that the user needs to insert the correct logic
expression corresponding to this tag. Note that this is counted as a
correct translation, since the system correctly indicates when and
where the user needs to intervene.

We have not used traditional metrics, such as BLEU [17] or
ROUGE [15] score to measure the translation precision as our cor-
rectness criterion is more stringent – produce syntactically and
semantically correct SVAs that can be compiled successfully. Hence,
our metric is based on the more traditional precision metric from
binary classification. This is represented in the equation 1 below.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (1)

where, 𝑇𝑃 represents the True Positive and 𝐹𝑃 represents False
Positive. SVA translations that were marked as correct by human
engineers are counted as 𝑇𝑃 and all others are counted as 𝐹𝑃 . The
𝐹𝑃 instances, by definition, include all the sentences which were
classified as to_be_translated, but were not translate-able or marked
by a human being as incorrectly classified.

Dataset Sentences Classified Translated Precision
1 4896 4896 3605 73.63%
2 43 43 27 62.79%

Table 2: Quality of results on internal IP datasets

We were able to achieve a precision of 73% on a data set we
created from proprietary IC design documents and 63% on hand-
crafted benchmarks datasets created by customers, as shown in
Table 2. SpecToSVA also demonstrated satisfactory results on large
customer documents with excellent quality of results (QoR) as
shown in Table 3. These results were validated by actual users of
the system on documents that they were familiar with.

Docs Sentences Classified Translated Precision
Doc-1 679 622 476 70.1%
Doc-2 1124 981 555 49.37%
Doc-3 12962 11745 8274 63.83%
Doc-4 19060 16933 12186 63.93%

Table 3: Quality of results on commercial IC Specifications.

5 CONCLUSION AND FUTUREWORK
We have described a commercial system (SpecToSVA) for trans-
lating English language IC design specification document to SVA.
SpecToSVA provides a complete flow for IC designers and verifi-
cation engineers to identify potential verification items from a IC
design specification and translate those verification items to formal
language models i.e. assertions or checkers. Experimental results
support the utility of SpecToSVA across different commercial/public
IC design specification documents with reasonable precision that
significantly improved the productivity of verification engineers.

There are open problems that we plan to address in future work.
Currently, SpecToSVA can translate only single and self-contained
sentences to SVA. However, there are many instances where mul-
tiple sentences must be considered for translation to a single SVA
construct. The challenge is to establish cross-references between
different sentences in a document that may have more than 1000
pages and then combine those sentences in a such a way that you
can translate it to meaningful SVA.

Hence, there are two main problems we plan to address: 1) Find
co-references between two or more sentences that can potentially
be used for translation; and 2) Combine and/or re-write those sen-
tences that can be consumed by SpecToSVA for translation pur-
poses. We will extend SpecToSVA in future to address these two
challenges. In addition, all the usual challenges in complex docu-
ments such as inferring semantics of diagrams, formatting (such as
nested bullet-ed lists) and so on need to be addressed.
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