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ABSTRACT
Optical Character Recognition (OCR), the task of extracting tex-
tual information from scanned documents is a vital and broadly
used technology for digitizing and indexing physical documents.
Existing technologies perform well for clean documents, but when
the document is visually degraded, or when there are non-textual
elements, OCR quality can be greatly impacted, specifically due
to erroneous detections. In this paper we present an improved de-
tection network with a masking system to improve the quality of
OCR performed on documents. By filtering non-textual elements
from the image we can utilize document-level OCR to incorpo-
rate contextual information to improve OCR results. We perform
a unified evaluation on a publicly available dataset demonstrating
the usefulness and broad applicability of our method. Additionally,
we present and make publicly available our synthetic dataset with
a unique hard-negative component specifically tuned to improve
detection results, and evaluate the benefits that can be gained from
its usage.

CCS CONCEPTS
• Information systems→Document structure; •Applied com-
puting → Document analysis; Optical character recognition; •
Computing methodologies→ Object detection.
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1 INTRODUCTION
Detecting and recognizing words and characters in images is a
cornerstone technology for information extraction in the visual
domain [30]. The difficulty of the task can often be divided into two
categories: Optical Character Recognition (OCR) is often incorpo-
rated when the image is a digitized (scanned) document consisting
mostly of aligned text in standard fonts displayed on uniform back-
grounds [37]. For text appearing in natural images, Natural Scene
Text recognition (NST) is often used, which incorporates advanced
methods to overcome non-uniform backgrounds, non-standard
fonts, and words appearing at odd angles or which have undergone
spatial transformations [31]. Often the benefits of using NST are
less pronounced when dealing with scanned documents, and the
extra computation power, especially when dealing with the large
amounts of words appearing in a standard document, makes it less
of a viable option. Therefore in this work we focus mostly on OCR
solutions for extracting text from documents.
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One of the most broadly used solutions for OCR today is Tesser-
act [34]. Tesseract is considered a commodity and the go-to solu-
tion when the given task is text extraction from documents. The
lightweight framework, multi-language support, ease of use, and
open-source code provide an extremely useful resource. However,
Tesseract exhibits degraded results on documents exhibiting non-
ideal conditions [35]. Specifically, Tesseract tends toward false de-
tections when there are noise artifacts or non-textual elements in
the document such as logos, figures, and graphical elements.

In this work we propose a system to improve OCR results on
degraded documents. Specifically, we create a pipeline which can be
easily and readily applied to improve a standard OCR platform such
as Tesseract. The core concept is to apply a pre-processing step with
a designated detection network to perform a masking operation
before processing the document with Tesseract (see Figure 1).

It is important to note that themain purpose of using this pipeline
is to utilize the OCR’s ability to perform better recognition when
working at the document level. When using the same detector and
applying OCR on every detection separately, the results are not
as satisfactory due to the fact that contextual data could not be
leveraged. Indeed, even if the detection network within Tesseract’s
pipeline could be replaced with the detector used for masking,
results would likely not be better, as leveraging the contextual
data was learned from clean documents. When the input is a noisy
document, the artifacts given in the image will hamper leveraging
the contextual element even when given a noise-free detector due
to the appearance of the text’s local visual surroundings.

To train a document text detector, we present a deep learning U-
Net architecture [32] trained on our presented dataset. The dataset is
synthesized with a variety of noise and difficult backgrounds as well
as novel hard-negative samples to promote training of robust text
detectors. We make the dataset publicly available as a standalone
pre-generated archive of 100k documents.

We perform a series of evaluations demonstrating the usefulness
of the dataset, our network, and the masking approach. Of note is
the fact we demonstrate the performance on SROIE [13], a publicly
available dataset of scanned receipts which accurately represents
documents under difficult conditions.

Our contributions are as follows:
• We present our new masking formulation for improving
OCR results on noisy documents.

• We present a U-Net architecture and training methodology,
and demonstrate its usefulness for text detection in docu-
ments.

• We propose a new data synthesis approach with a novel
hard-negative component, and make it publicly available 1

1https://github.com/ophirazulai/SyntheticNoisyDocsDataset

https://github.com/ophirazulai/SyntheticNoisyDocsDataset
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Figure 1: A diagram of our system. The image is analyzed by the U-Net text detector and then undergoes a masking operation
to eliminate non-textual artifacts. The clean document fed into the OCR technology results in superior text detection and
recognition.

as a pre-generated dataset for the problem of text detection,
and show the benefit of training given this dataset.

2 PREVIOUS WORK
2.1 OCR
For the task of OCR, the most prominent and wide-spread solution
is Tesseract [34]. Originally, Tesseract was released as open-source
in 2005 using mainly classic computer vision techniques includ-
ing edge connected components analysis, blob filtering, quadratic
spline fit, and recognition using topological features, and polygonal
approximation. Starting from version 4, Tesseract employs LSTMs
[8, 11] and the CTC loss [7] which are the current state-of-the-art
approaches for text recognition.

Tesseract is considered the state of the art for OCR with regard to
a commodity which is broadly applicable and easy to operate. The
fact that it is so broadly used makes creating techniques to improve
Tesseract’s results doubly useful. For this reason we present our
masking technique as a general pre-processing step which can
easily improve Tesseract results and can be readily utilized.

However, when time or resource constraints are not an issue, ad-
vancedmethods for extracting text from images exist. Natural Scene
Text recognition (NST) networks have risen recently in popularity
[31], but these approaches are outside of the scope of this work
which focuses on light-weight text extraction from documents.

In this work we focus mainly on using the proposed masking
approach before applying Tesseract as an OCR engine. However, the
same reasoning and methodology can apply to other OCR systems.

2.2 Detection
For detecting multiple objects from images, a very common ap-
proach is creating segmentation maps using a U-Net architecture
[32]. The architecture is characterized by the convolution layers
which condense the spatial element to a bottleneck, and then up-
convolutions which return the semantic information to the original
spatial dimensions. There is a variety of uses for the U-Net archi-
tecture and variations, including image segmentation (with a wide
usage in medical imaging) [14, 15, 46], but also in other tasks such
as saliency detection [10], or as GAN descriminators [33].

Many powerful text detectors are constructed with architectures
to promote NST. EAST [45] features a contracting and expand-
ing network similar to the U-Net, and performs regression on the

quadrilaterals based on the feature which is also used to generate
the score map. PAN [40] also adopts a contracting and expanding
network, and adds explicit kernel learning to isolate and better
separate close text in the pixel aggregation stage.

2.3 Masking
In this work we use masking of non-textual elements as a type
of de-noising technique to enable Tesseract to utilize contextual
information without considering noise and artifacts [6].

The term masking can sometimes refer to attention modules
[12, 41], or as part of training transformer networks [22]. Since
the methodology we adopt is to perform the masking as a pre-
processing stage and to leave Tesseract as a black-box, the methods
above are not equivalent to our masking action which does not
integrate knowledge or share semantic information.

Straightforward de-noising methods try to model the noise and
convert the document accordingly [24, 29, 35, 38]. These methods
do not rely on the use of a text detector which can be seen as
an advantage, but often are limited to specific types of noise and
can degrade the quality, sharpness, and shape of the actual textual
elements. In our approach, instead of trying to model the noise, we
aim instead on learning the ability to isolate and detect the text
regions despite the noise present.

Finally, a common way to improve OCR results without interven-
ing in the detection and recognition process is through post-OCR
error correction [4, 16]. These steps often leverage language models
and information, and also represent one of the types of context
which Tesseract uses to improve OCR quality when performing on
the document-level. Typically the types of linguistic and context
errors here do not overlap with the ones our masking approach
tries to solve such as noise and non-text artifacts, therefore this
domain is beyond the scope of our work.

2.4 Document Datasets
The availability of datasets to train document OCR is limited.

FUNSD [17] consists of 199 documents with roughly 31k word
annotations. The tasks and goals presented with the FUNSD dataset
include mainly spatial layout analysis and form understanding.
With quantity of this magnitude, this dataset can be useful for
training and evaluating the tasks which require the component of
semantic understanding. However, for the task of text detection
it is necessary to have a much larger collection to encompass the
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low-level variability which exists when attempting to isolate text
shapes from non-ideal backgrounds.

SROIE [13] is a dataset consisting of scanned receipts for the
tasks of OCR and key information extraction. Despite the large
number of samples, the word count per document on these receipts
is not large enough to promote training text detectors from scratch.
We do however leverage this dataset for evaluation in Section 4.

Some additional datasets are Brno [20] which includes mostly
spatial and lighting variations, quality assessment [21, 26] which
concentrate on motion and focus blur, SmartDoc [2] which is
comprised of videos and only 10 documents, and some others
[1, 5, 27, 36]. However, none of these contain enough data to reliably
train a robust text detector for documents.

The exception to the above is DDI-100 [44]. This dataset includes
7000 documents which then undergo a variety of transformations.
Despite the strength of utilizing real documents, we evaluate and
show in this work that the variability and distortions in the dataset
are not diverse enough to train a powerful text detector which is
truly robust to noise.

In contrast, NST datasets have risen greatly in popularity in
the past years [3, 9, 18, 19, 25, 39, 42, 43]. However, the challenges
presented in these datasets including irregular fonts and artistic text
shapes and layouts, do not correctly represent the types of situations
that a document text detector needs to learn to overcome.

3 METHOD
3.1 Dataset
We now present our synthetic automatically generated dataset for
text detection in documents.

We use a python framework with the PIL library to synthesize
text on images. Backgrounds are selected at various set probabilities
with the options of white, natural image, and texture. For the latter,
the textures are converted to grayscale and then a contour filter
and a random dynamic range pixel value stretch is applied.

Text is synthesized with font size ranging from 9 to 100 pixels
and font randomly selected 80% from 20-30 common fonts and 20%
from a large assortment of unique fonts. The text to synthesize is
selected randomly from a wikipedia content database [28], which
includes a large corpus of words, numbers, domains, dates, phone
numbers, URLs, and more. The ground truth heat-map is generated
as character-level bounding boxes to avoid protruding letters caus-
ing the background around smaller letters to be labeled as text (see
Figure 3).

Font-level noise is randomly added chosen from speckled dots,
binarization, and random spatial distortions. Random small rota-
tions are added to represent miss-alignment for scanned documents.
As a final step, document-level noise is added randomly in the form
of blur, compression, or downsampling. This step represents ex-
pected distortions which are likely to appear during scanning or
photographing a document.

To promote powerful negative sample filtering, we present a
novel hard-negative synthesis approach to create particularly dif-
ficult data with which to train the detection network (see Figure
2). Characters are generated and cropped into quarter-sized seg-
ments. A crop is augmented by a random rotation and scaling and

Figure 2: Examples of rendered hard-negatives. The detec-
tor learns to disregard character-like shapes and contours if
they do not represent actual letters.

re-rendered to represent contours which are character-like but not
actual distinguishable letters.

3.2 U-Net Network
We adopt a classic U-Net architecture for our text detection network.
Four layers of convolution and then up-convolution are performed
with 32, 64, 128, and 256 channels. In the up-convolution process
skip-connections are employed by concatenating the output feature
of the up-convolution with the feature of the regular convolution
at the same level.

We use 100k synthesized documents 1024x1024 pixels, each con-
sisting of a random number of synthesized tiles in each document
(see Figure 3). The dice loss [23] is used with the ADAM optimizer
and a learning rate of 1e-5.

3.3 Detection Masking
The output of the text detector is used to mask the given image.
Areas which were not detected as containing text are blanked out
and then the cleaned image is fed into Tesseract. Tesseract is run
on the document-level, without providing the detections from the
external text detector.

We note that a specific weakness of Tesseract is to sometimes
identify entire paragraphs or lines as a single detection which

Figure 3: A miniature example of a generated document
with only two synthesized tiles. Below is the matching gen-
erated binary ground-truth map for text localization.
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Table 1: Visual results on two images from the SROIE dataset.

Original Masked

X5
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36
19
08

X0
00
16
46
96
69

Without Masking With Masking

[45]

Ours

[45]

Ours

impedes recognition. Given the external text detection results, a
post-processing procedure can be performed where these large
detections are identified, merged with the text detector, and then
resent to Tesseract for re-processing as individual detections.

4 EVALUATION
We evaluate our masking technique, detection network, and contri-
bution of our dataset on the SROIE dataset [13]. We used all 1064
images, with annotated text bounding boxes and transcribed words.

In Table 2 we present the results of our evaluation. We measure
detection using the F1-score of correctly detected bounding boxes
using IOU 0.5. We measure recognition by the normalized edit dis-
tance for an entire document, where for True-Positives we calculate
the edit distance as the Levenshtein distance, and for False-Positives
and False-Negatives we set the edit distance as the length of the

Table 2: Results on SROIE dataset. Detectionmeasured by F1-
score, and recognitionmeasured by average case-insensitive
Edit Score (ES). ‘Recognition’ indicates using the method’s
detections for word-level recognition. ‘Masked’ indicates us-
ing our masking method and document-level recognition.

Detection Recognition Recognition
Method F1 ES ES Masked
Tesseract 84 67
PAN [40] 75 37 51
EAST [45] 84 48 59

U-Net - DDI [44] 82 56 62
U-Net - Ours 92 72 75

string. The normalized edit distance is the sum of edit-distances
divided by the length of the text, and the Edit Score (ES) is 1 minus
the edit distance. Case is rendered insensitive as the annotations of
the SROIE dataset do not include upper or lower case.

Tesseract results act as the baseline where the OCR is run at
the document level. The consistent improvement which can be
seen for all methods when using the masking technique shows the
generality and usefulness of the approach. The improvement for
U-Net between ‘DDI’ and ‘Ours’ shows the benefit of using out
training dataset for the task of text detection.

In Table 1 we show some visual results from the SROIE dataset.
On the left we show visually the output of the masking operation
which results in a cleaner and often more eligible document. On the
right we show close-up examples on the original document with
the detection and recognition results visually embedded. ‘Without
Masking’ represents using the detections and applying Tesseract on
the word-level, while ‘With Masking’ represents using the masking
technique and applying Tesseract on the cleaned output at the
document-level.

5 CONCLUSIONS
In this work we presented a masking technique based on a desig-
nated text detector to improve document OCR. We introduced our
new synthesized dataset with a novel hard-negative component
designed to empower robust detection. Finally, through evaluation
we showed the benefits of using the masking approach and of using
the dataset to utilize OCR performance which utilizes contextual
data on documents.
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