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ABSTRACT
We present a novel approach for extracting structured data from
a collection of similarly-structured scanned documents (e.g., mul-
tiple instances of the same form, or printouts from a database).
Documents are not required to have a fixed layout; the position of
some elements may shift vertically, and groups of fields can appear
repeatedly. We are robust against OCR errors and other noise. Our
training stage requires only a handful of sample documents, one of
which is annotated for fields of interest. Using this training data, we
are able to extract data from other similar documents. Extraction
of data is performed using a diff -like algorithm over boilerplate
text tokens of the documents, which is leveraged to find areas in
the input documents which correspond to areas in the annotated
document.
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1 INTRODUCTION
Collections of similar-looking structured documents are a common
occurrence in many fields. Often, a problem of interest is to trans-
form such a collection into a database of structured data (e.g., into
a spreadsheet where each document is represented by a single row,
and field values in that document are represented as columns).

The scope of this problem is inherently not well-defined, due to
the vast number of document types that exist in the world. Never-
theless, we attempt to formalize some of our notations.

Definition 1. A template𝔗 is a family of documents, all of which
are instances of a single type of form, or printouts of records from
a single database. Different documents in a template may contain
certain variations in their layout, such as vertical shifts and repeating
fields (see specific assumptions in Section 3).

In this work, we present a system capable of solving the following
problem:

Problem 1. We are given a collection of documents from some
template𝔗. Using a single human-annotated document, and a handful
of additional non-annotated samples for training, we wish to extract
structured data from fields in all of the documents in the collection.

The small number of training inputs that we require makes
our system ideal for use by users that have limited resources, in
contrast to ML systems that typically require very large numbers
of annotated inputs.

Relevant prior work includes [2, 3, 5–10]. However, these works
were less focused on training for specific templates.

2 DOCUMENT ELEMENTS
Definition 2. We use the term boilerplate text to refer to any

text that appears frequently across documents of the template. This
includes things like instruction text, section headers, and element
labels.

Documents from the same template share some constant boiler-
plate text, but usually have different text values filled for various
fields.

A document may consist of many elements, and we categorize
each as being one of the following:

(1) Key-value field. The key is the constant label boilerplate, and
the value may change across documents.

(2) Repeating section. A section (which may contain key-value
fields) which repeats sequentially a variable number of times
in each document in 𝔗. We call each repetition of the sec-
tion an iteration. In each iteration, the same boilerplate text
appears, including the full text of each key.

(3) Header or footer text. These are almost-constant chunks of
text that may appear at the top or bottom on every page of
the document.

(4) Other elements: text which is not associated with any of the
above (e.g., legal notices or instructions), tables, and images.

Figure 1: A repeating section containing twokey-value fields
whose keys are "First name" and "Last name". The section
has two iterations. Other documents in the same template
may contain a different number of iterations.

3 SUPPORTED DOCUMENT LAYOUTS
In the data extraction method presented here, we do not assume
that all documents have a fixed layout; some fields may be optional
or repeat themselves. As a result, some parts of the documents
may not be located in the same place, when inspecting different
documents of the same template – elements may float vertically or
not exist at all.

In addition, a certain amount of additional text noise (either
due to OCR errors or unexpected variations across documents) is
tolerated.

We make some basic assumptions about variance among docu-
ments in a given template 𝔗:
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Assumption 1. Each key-value field has an area allocated to its
value whose size is constant and does not change across documents in
𝔗. In case smaller values appear, they will be surrounded by white-
space padding.

Assumption 2. Each key-value field has a constant offset vector
between the key and the value, across documents in 𝔗.

Assumption 3. Horizontal locations of boilerplate text are con-
stant (with slight tolerance for noise) and do not change across docu-
ments in 𝔗.

Assumption 4. Boilerplate should have a stable order: if docu-
ments in 𝔗 contain two boilerplate texts𝐴 and 𝐵, then whenever both
𝐴 and 𝐵 appear in a document,𝐴 should come before 𝐵 (when inspect-
ing the document in a top-to-bottom, left-to-right reading order1).

Assumption 5. Scanned document pages are not rotated, and not
shifted or scaled across the image canvas. Correcting any of these
transformations (if needed) can be done as a pre-processing step.

4 STRUCTURED DATA EXTRACTION
In this section we describe our method for extracting structured
data from scanned documents of a certain template. The method is
composed of a training stage (Section 4.2), and an extraction stage
(Section 4.3).

4.1 Input Document Format
Definition 3. A bounding box is a tuple ⟨top, left,width, height⟩

describing a rectangle on a given document page. Its left and top
attributes specify the X and Y coordinates of its top-left corner.

Definition 4. A text token is a tuple ⟨text, box⟩ containing text
of a word, and a bounding box specifying where the text is located.

Some basic information is assumed to be known about every
document we process. In each document D, the text contents are
divided into text tokens, which we denote as D .TextTokens. Text
tokens are stored in a reading order.

4.2 Training
In the first stage of our system, we prepare a trained model which
captures important information about a given template 𝔗.

4.2.1 Training Input. The inputs for this stage are a set of 𝑛 doc-
uments D1, . . . ,D𝑛 ∈ 𝔗. Typically, between 𝑛 = 2 and 𝑛 = 10
documents are enough to yield good results. We can use 𝑛 = 1, if
given a clean document containing only boilerplate text.

Our model also includes a golden document G ∈ 𝔗, which has
been annotated to specify fields for extraction.

Definition 5. A key-value field annotation 𝛼 = ⟨key, value, id⟩
describes a key-value field in a given document. It contains two bound-
ing boxes for the key and the value, and a unique identifier.

Definition 6. We use A to denote a collection of key-value field
annotations within a document.

1This is true for certain languages. For other languages, different reading orders may
be applied.

Per Assumption 1, when annotating the box 𝛼.value around a
value, we require it to be maximal, in the sense that it should cover
all the potential area of the value text, across all documents of 𝔗.
This should hold even if the actual value text in G is smaller.

4.2.2 Training Output. As part of our training, we find clusters of
estimated boilerplate text tokens which appear frequently across
D1, . . . ,D𝑛 . This is described in Section 4.2.3. We denote these clus-
ters by𝔗clusters.We denote our trainedmodel byM = ⟨𝔗clusters,G,A⟩.

4.2.3 Boilerplate Text Clustering. In this step (outlined in Algo-
rithm 1), we wish to find an approximation of all common boiler-
plate text tokens inD1, . . . ,D𝑛 . By Assumption 3, we note that the
two prominent features of a boilerplate token 𝑡 are 𝑡 .text and its
horizontal location 𝑡 .box.left.

Algorithm 1: FindBoilerplateTextClusters
input :Training set D1, . . . ,D𝑛 ∈ 𝔗, and a threshold 𝛾
output :Clusters of text tokens

tokens← empty list;
for 𝑖 ← 1 to 𝑛 do

for 𝑡 ∈ D𝑖 .TextTokens do
tokens.Add(𝑡);

// Cluster by text and X coordinate.

𝔗clusters ← FindClusters(tokens);
for 𝑐 ∈ 𝔗clusters do

if 𝑐.size < 𝑛𝛾 then
remove 𝑐 from 𝔗clusters;

return 𝔗clusters;

To find boilerplate, we run a clustering algorithm FindClusters
whose inputs are all the text tokens in all ofD1, . . . ,D𝑛 . FindClusters
is implemented2 by (1) partitioning all text tokens into disjoint sets,
each set containing tokens with the same text, (2) running a DBScan
algorithm [4] on each set of text tokens, to find clusters by horizon-
tal location of the tokens, and (3) merging clusters of tokens whose
text is similar, as defined by a heuristic (their lengths are similar,
and they have an edit distance lower than a threshold of 25% of the
length of the shorter word).

After clusters are obtained from FindClusters, any cluster whose
size is too small (less than 𝑛𝛾 ) is discarded, since it likely represents
a token that is not part of the template boilerplate. Specifically, we
found 𝛾 = 0.9 provides good results.

We are left with clusters representing text tokens that are likely
(but not guaranteed) to be boilerplate. Note that there are cases
where we might erroneously classify a token as boilerplate; for
example, if a certain value is popular among documents, like the
name of a popular city in an "address" field. Nevertheless, our
algorithm is able to tolerate a certain amount of noise in boilerplate
classification, and so these errors are not critical.

2Note that any other clustering method that allows some tolerance over the tokens’
text and horizontal location would be suitable.
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4.3 Extraction Algorithm
Let M = ⟨𝔗clusters,G,A⟩ be a model previously trained for some
template𝔗, and letD ∈ 𝔗 be a document. In the following sections,
we show how one can use M to extract structured data from D.
The output consists of text values of key-value fields, and is keyed
by 𝛼.id for all field annotations 𝛼 ∈ A. Some fields may be missing
from the output in case they were not found in D.

We note that this algorithm easily applies also to documents with
multiple pages, since we treat each document as one long sequence
of tokens. We also note that while the algorithm described here uses
one golden input ⟨G,A⟩, it can be extended to work with multiple
golden documents and aggregate their results to remove outliers.
Finally, note that the golden document annotations are needed
because our boilerplate token classification is only approximate;
we need a human in the loop to indicate areas guaranteed to be
keys and values.

4.3.1 Extracting Key-Value Fields. Algorithm 2 outlines a procedure
for extracting key-value fields in D. Only fields that match those
which are annotated in A are extracted.

Algorithm 2: ExtractStructuredData
input :M = ⟨𝔗clusters,G,A⟩,D
output :A mapping in which for each 𝛼 ∈ A, 𝛼.id is

associated with its text in D (if it is found)

G𝑠𝑒𝑞 ← ClassifySequence(G.TextTokens,𝔗clusters);
D𝑠𝑒𝑞 ← ClassifySequence(D .TextTokens,𝔗clusters);
diff← CalculateDiff(G𝑠𝑒𝑞,D𝑠𝑒𝑞);
for 𝛼 ∈ A do

valueBoxD ← MapValueBox(𝛼,G,D,G𝑠𝑒𝑞,D𝑠𝑒𝑞, diff);
value← GetTextAtBox(valueBoxD ,D);
EmitResultValue(𝛼.id, value);

First, for each token in each of the documents D and G, we
apply a cluster classification algorithm, based on the boilerplate
text clusters 𝔗clusters. Classification is performed using the token’s
horizontal location and its text; these are compared against the
known clusters in 𝔗clusters. After classification, the token is either
classified with a certain cluster ID, or not. Tokens associated with a
cluster ID are likely to be boilerplate text.

Definition 7. A clustered text token is a 2-tuple containing a
text token and a cluster ID to which the token has been classified to.

We denote by G𝑠𝑒𝑞,D𝑠𝑒𝑞 the sequences of clustered text tokens
in G and D, respectively. Each sequence is sorted in reading order,
and contains only those text tokens which have been successfully
classified to a cluster; text tokens that are not classified to a cluster
are omitted from the sequence.

The call toCalculateDiff() invokes a longest-common-subsequence
algorithm [1] (also known as a diff algorithm) over G𝑠𝑒𝑞 and D𝑠𝑒𝑞 .
The result is a partial 1:1 mapping from a subset of presumed-
boilerplate text tokens in G𝑠𝑒𝑞 to presumed-boilerplate text tokens
inD𝑠𝑒𝑞 . Intuitively, such a mapping is a signal that can be leveraged
to locate corresponding areas between G and D.

Finally, we iterate over all key-value annotations 𝛼 ∈ A, and for
each one, we attempt to find the value of this key-value field in D.
We do this by:

(1) Calling MapValueBox() in order to estimate the position
valueBoxD of the bounding box of the field’s value in D
(as will be explained in Section 4.3.2).

(2) Calling GetTextAtBox() to extract document text in D at the
estimated location valueBoxD . Note that this stage can be
applied to non-text values as well, e.g., checkbox elements
or images.

(3) Calling EmitResultValue() to emit this value in our extraction
results, associated with the annotation identifier 𝛼.id.

Note that diff retains the reading-order of the documents, so if,
e.g., there are two key-value fields having the same key, we can tell
which one is the first and which is the second.

4.3.2 Mapping Positions of Bounding Boxes From G to D. The
MapValueBox() procedure in Algorithm 3 is central to our extraction
procedure. Given bounding boxes 𝛼.key, 𝛼 .value of a key-value field
in G, MapValueBox() finds the bounding box of the value of the
same field in D.

MapValueBox() first estimates the position of the field key’s
bounding box in D via a call to MapKeyBox(). Next, due to As-
sumptions 1 and 2, the estimated location of the value box relative
to the key is trivially calculated via a call to ShiftBox() which applies
the X and Y offsets seen in G between the key and the value.

Algorithm 3:MapValueBox
input :𝛼 ∈ A,G,D,G𝑠𝑒𝑞,D𝑠𝑒𝑞, diff
output :Estimated bounding box in D which corresponds

to 𝛼.value

// In case the following line fails, we will

return early and skip extraction for 𝛼.

keyBoxD ← MapKeyBox(𝛼.key,G,D,G𝑠𝑒𝑞,D𝑠𝑒𝑞, diff);
xOffset← 𝛼.value.left − 𝛼.key.left;
yOffset← 𝛼.value.top − 𝛼.key.top;
return ShiftBox( keyBoxD , xOffset, yOffset);

MapKeyBox is somewhat elaborate, so wewill describe it verbally.
It attempts two heuristics, choosing the result from the first one
that succeeds, or failing (thus skipping extraction for this key-value
field) if both of them fail:
• Observe the set of boilerplate text tokens of G𝑠𝑒𝑞 whose
bounding boxes are inside 𝛼.key. If a significant portion of
them (e.g,. covering at least 70% of their text characters)
are mapped via diff to tokens in D𝑠𝑒𝑞 , then call Estimate-
BoxViaMatches (Algorithm 4), which uses these mappings to
estimate the bounding box keyBoxD of the key in D.
• In case the previous heuristic failed (not enough tokens were
matched via diff), try a more relaxed approach: look at all
boilerplate text tokens of G𝑠𝑒𝑞 whose bounding boxes are
within a certain vertical distance above and below 𝛼.key.
This range should ideally cover 2-3 text lines. Take the set
of all mappings in diff that involve those tokens, and at-
tempt to estimate a rough approximation of the bounding
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box keyBoxD using them, via another call to Algorithm 4.
Next, scale up the approximate keyBoxD box by a factor of
×1.5, to allow some extra slack. Finally, search through all
text tokens inD inside the approximate keyBoxD (including
those which were not classified as boilerplate). Return suc-
cessfully only if we found a text match for the original key
text from 𝛼.key (again, including non-boilerplate classified
tokens) inside the approximate keyBoxD . We allow minor
variations when matching the text, for robustness against
OCR errors. The returned keyBoxD will be refined to be the
minimal bounding box around the found text tokens.
Note that operating on raw text, as opposed to limiting our-
selves only to classified boilerplate text, allows us to over-
come possible errors in the boilerplate classification.

Algorithm 4: EstimateBoxViaMatches
input :A set of matched bounding boxes in G and D:

{⟨𝑔1, 𝑑1⟩, . . . , ⟨𝑔𝑚, 𝑑𝑚⟩}, and a bounding box
keyBoxG in G

output :An estimation of where keyBoxG would be if it
were in D

xOffsets← empty list;
yOffsets← empty list;
for 𝑖 ← 1 to𝑚 do

xOffsets.Add(𝑑𝑖 .left − 𝑔𝑖 .left);
yOffsets.Add(𝑑𝑖 .top − 𝑔𝑖 .top);

xOffset← Median(xOffsets);
yOffset← Median(yOffsets);
return ShiftBox( keyBoxG , xOffset, yOffset);

4.4 Supporting Repeating Sections
The algorithm in Section 4.3 extracts simple key-value fields. We
now show how it can be extended to extract key-value fields inside
repeating sections.

First, we add additional data to the annotations A in our model3:
for each repeating section in G, we annotate the area covering a
single iteration (denoted the golden iteration), and also the area cov-
ering all other iterations of the section. These annotated areas must
be bounding boxes covering the entire page width. Importantly,
we limit annotation of key-value fields in the repeating section to
reside only inside the golden iteration.

During extraction, we first delete all tokens in G that are in-
side the repeating section, except those that are inside its golden
iteration. Then, we need to modify the CalculateDiff() algorithm
to solve a generalized version of the longest-common-sequence
problem, where we allow "star" regex operations over the tokens
in the golden iteration. More formally, for a template containing a
single repeating section4, we solve the following problem:

Problem 2. Let 𝑋 = 𝑥1 . . . 𝑥 |𝑋 | , 𝑌 = 𝑦1 . . . 𝑦 |𝑌 | be nonempty
strings. Let 1 ≤ 𝑠 ≤ 𝑡 ≤ |𝑋 |. We denote 𝐴 = 𝑥1 . . . 𝑥𝑠−1, 𝐵 = 𝑥𝑠 . . . 𝑥𝑡 ,
3As future work, we can try and detect these annotated vertical areas automatically.
4We describe the problem for a single repeating section, but it can easily be generalized
to multiple sections.

𝐶 = 𝑥𝑡+1 . . . 𝑥 |𝑋 | so that 𝑋 may be written as 𝑋 = 𝐴𝐵𝐶 (note that 𝐴
or 𝐶 may be empty strings). Observe the family of strings that match
the regular expression𝐴𝐵∗𝐶 , i.e., {𝐴𝐶,𝐴𝐵𝐶,𝐴𝐵𝐵𝐶,𝐴𝐵𝐵𝐵𝐶, . . . }. We
are interested in finding some 𝜒 ∈ 𝐴𝐵∗𝐶 such that the length of the
longest-common-subsequence between 𝜒 and𝑌 is maximal (compared
to all other 𝜒 ′ ∈ 𝐴𝐵∗𝐶), and to return that subsequence.

In our context, 𝑋 = G𝑠𝑒𝑞, 𝑌 = D𝑠𝑒𝑞 , and 𝑠, 𝑡 are determined by
golden iteration indices of G𝑠𝑒𝑞 . While Problem 2 can be solved
optimally (e.g., recursively, similar to the classic longest-common-
subsequence problem), we opted to implement an approximation:
we estimate an upper bound on the number of iterations of the
section in D by counting appearances in D𝑠𝑒𝑞 of tokens in the
golden iteration, and then duplicate the golden iteration in G𝑠𝑒𝑞
as many times. We then use a classic diff algorithm to obtain a
one-to-one mapping of the iterations, and we apply heuristics to
compact those into a minimal representation: one-to-many, from
the golden iteration in G to all iterations in D. Finally, extracted
values that we emit are indexed also by their iteration number.

4.5 Other Document Elements
Headers and footers can be removed as a pre-processing step. Note
that this is not mandatory; the diff algorithm is already robust
against noise on its own. Similarly, general boilerplate text, images,
tables, and other features mentioned in Section 2 are elegantly
ignored by the diff algorithm, in most cases.

4.6 Results
We tested the system on about 300 filled forms which were scanned.
The template of the forms is fixed and does not contain repeating
sections, but some noise exists due to the scanning process. 𝑛 = 3
documents were used for clustering, one of which was annotated
for 5 key-value fields. We extracted data from the other documents.
Evaluation was performed by comparing the bounding boxes of
extracted values vs. human-labeled ground truths. Box comparison
was implemented by applying a threshold 𝜃 = 0.9 to the area of
intersection-over-union of the boxes: 𝐵1∩𝐵2

𝐵1∪𝐵2
. Overall precision score

was 0.912, and recall was 0.915, yielding an 𝐹1 score5 of 0.914. We
evaluate bounding boxes as opposed to text contents, since boxes
accurately measure the quality of our algorithm’s output, while not
measuring OCR quality (which is not the focus of this paper).

Sporadic tests were also performed on smaller collections of
documents including repeating sections, from templates satisfying
the assumptions in Section 3, with comparable results.
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