

# SpecToSVA: Circuit Specification Document to SystemVerilog Assertion Translation

Document Intelligence Workshop @KDD - 2021

Ganapathy Parthasarathy, Saurav Nanda, Parivesh Choudhary, and Pawan Patil

July 31, 2021

### Background Work

Verification in EDA

#### Design Verification is time-consuming due to huge manual effort

"Industry studies reveal that as much as 50% of the total schedule is being spent in verification." Damiano, Robert, et al., DATE (2004)

"By consensus within the electronics industry, design verification burns 70% or more of the development cycle." Raynaud, Alain. ElectronicDesign (2013)

"... up to 60% of the design cycle of a modern SoC consists of verification activities." Harris, Christopher B. and Harris, Ian G., DAC (2016)

#### Automation in defining verification collateral can reduce manual effort

Generate automatically checkable formal properties from natural language specifications

### SpecToSVA - Overview

Problem and Proposed Solution



### SpecToSVA Architecture

System Architecture and execution flow for each sub-problem

- Automatically synthesize verification items.
- Provide work-flow to iteratively improve QOR.
- Constituency Tree is enhanced using a custom NER model.
- SVAT: NER correspondence between English and SVA languages.
- Token Replacement: OOV markers.



### Sentence Classification

Explanation with an example

Sentence Classification [1] technique uses disagreeing heuristics to estimate marginals



### **Sentence Analysis**

NER Detection and Enhanced Constituency Tree Generation



### **DNN Model Training**

SPINN based DNN for Generator and Pointer Network

#### **Generator Network**

- Buffer and transitions (Encoder) and corresponding target lang (Decoder)
- Learns the structure of target language from the source lang
- Output has OOV (NER) tokens and SVA (ops/fn/const)
- Buffer has token positions of English language words

#### Pointer Network

- Works similar to Generator Network
- It learns the relative positions of OOV (NER)
- Training data comprises of English and corresponding SVA
- Buffer has token embeddings of English language words

#### Transitions

- Post-order token sequence of updated constituency tree
- Every POS tag of constituency tree is a transition



Generate translation tokens

#### **SYNOPSYS**<sup>®</sup>

### **Translation Process - Overview**

Example to explain the translation process



SystemVerilog Assertion assert property (!(awvalid == 1) || (!(awburst == 2b'11)));

### **Experimental Results**

Example Translations

| ## | Input English                                                                    | Output SVA                                                  |
|----|----------------------------------------------------------------------------------|-------------------------------------------------------------|
| 01 | IRESP remains stable when IVALID is asserted and IREADY is LOW.                  | (ivalid && ! iready)  =>\$stable (iresp)                    |
| 02 | IREQ is only permitted to change from HIGH to LOW when IACK is HIGH.             | \$fell (ireq)  ->iack                                       |
| 03 | When transmit data is written to SPDR/SPDR_HA and when the transmit buffer       | ((def_wr_spdr_spdr_ha) && (user_def_spdr_spdr_ha_empty)  -> |
|    | of SPDR/SPDR_HA is empty (data for the next transfer is not set), the SPI writes | (## user_def_tim01) \$fell(sptef))                          |
|    | data to the transmit buffer and clears the SPSR.SPTEF flag to 0.                 |                                                             |

Examples of English sentences translated to SVA

### **Experimental Results**

Performance and QoR

| Dataset | Sentences | Classified | Translated | Precision |
|---------|-----------|------------|------------|-----------|
| 1       | 4896      | 4896       | 3605       | 73.63%    |
| 2       | 43        | 43         | 27         | 62.79%    |

Quality of results on internal data

| Docs  | Sentences | Classified | Translated | Precision |
|-------|-----------|------------|------------|-----------|
| Doc-1 | 679       | 622        | 476        | 70.1%     |
| Doc-2 | 1124      | 981        | 555        | 49.37%    |
| Doc-3 | 12962     | 11745      | 8274       | 63.83%    |
| Doc-4 | 19060     | 16933      | 12186      | 63.93%    |

Quality of results on commercial IC Specifications

### **Conclusion and Future Work**

What do we have currently, and what we want to achieve in future?

- Conclusion
  - -SpecToSVA provides a complete flow for IC designers and verification engineers to identify potential verification items.
  - -Translate those verification items to formal language models i.e. assertions or checkers.
  - -Experimental results support the utility of SpecToSVA
    - -Different commercial/public IC design specification documents
    - -Reasonable precision that significantly improved the productivity of verification engineers.
- Future Work
  - -Find co-references between two or more sentences that can potentially be used for translation;
  - -Combine and/or re-write those sentences that can be consumed by SpecToSVA for translation purposes.



[1] Alexander Ratner, Braden Hancock, Jared Dunnmon, Frederic Sala, Shreyash Pandey, and Christopher Ré. 2019. Training complex models with multi-task weak supervision. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 4763–4771.

[2] Nikita Kitaev and Dan Klein. 2018. Constituency Parsing with a Self-Attentive Encoder. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2676–2686.

[3] Samuel Bowman, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christopher D Manning, and Christopher Potts. 2016. A Fast Unified Model for Parsing and Sentence Understanding. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 1466–1477.

Note: Please refer to the paper for full list of references.



## Thank You