
Few-Shot Learning for Structured
Information Extraction From
Form-Like Documents Using a
Diff Algorithm

Nerya Or, Shlomo Urbach

Google

Introduction
Input: a set of similar looking documents, one of which is labeled to highlight key-value fields.

Output: a trained model, allowing extraction of values of those same fields from additional
similar-looking documents.

File name Name Address Job

Report 1.pdf Alice 9 Main st. Researcher

Report 2.pdf David 123 Broadway Teacher

Report 3.pdf Carol 77 Madison Doctor

Report 4.pdf Eve 9 7th ave Gardener

Report 4.pdf

Name: Eve
Address: 9 7th ave
Job: Gardener

Report 3.pdf

Name: Carol
Address: 77 Madison
Job: Doctor

Report 2.pdf

Name: David
Address: 123 Broadway
Job: Teacher

Report 1.pdf

Name: Alice
Address: 9 Main st.
Job: Researcher ➜

Document templates

A template is a family of documents, all of which are instances of a single type of
form, or printouts of records from a single database.

Different documents in a template may contain certain variations in their layout,
such as vertical shifts, optional fields, and sections repeating a variable number of
times.

Assumptions about documents in a template

● Bounding boxes of values have a fixed size, at a fixed offset from their key.

● The X coordinate of boilerplate text tokens is mostly fixed (up to some
tolerance) across documents in the template.

● Y coordinates of tokens may vary. However, if element A appears before
element B in the golden document, the same will hold in the input document.

● The OCR engine provides us with a robust reading order of the documents.

● Scanned document pages are not significantly rotated, and not shifted or
scaled across the image canvas. Correcting any of these transformations (if
needed) can be done as a pre-processing step.

Sample run

Input:

● Labeled key/values on a golden document.
● Training set of additional unlabeled documents.
● Input document(s), for extraction.

All documents should share the same template.

Output: Extracted fields from the input document(s).

Golden document

Input document for extraction

Training
set

Training: text token clustering

● Cluster the text tokens found in the training set.
○ Similarity of two given tokens is a function of their horizontal distance and text edit

distance.

● Delete all clusters that are too small (less than some % of documents).
○ This removes most “value-only” tokens.

Thus, each text token is either:

● A member of some token-cluster (i.e., suspected as form label/boilerplate).
● Not a member of a cluster (i.e., suspected as a form value).

Clustering - example

Document 1:

Document 2:

⋮

First name: Bob Last name: Meow

First name: Alice Last name: Smith

Clustering - example

Document 1:

Document 2:

⋮

First name: Bob Last name: Meow

First name: Alice Last name: Smith

OCR text tokens and their X coordinates:
<First, 10>, <name, 150>, <Alice, 350>,
<Last, 600>, <nane, 750>, <Smith, 960>,
<First, 12>, <name, 147>, <Bob, 360>,
<Last, 598>, <name, 751>, <Meow, 955>

Clusters:
3 = {<First, 10>, <First, 12>},
56 = {<name, 150>, <name, 147>},
82 = {<Last, 600>, <Last, 598>},
7 = {<nane, 750>, <name, 751>},
{<Alice, 350>},
{<Smith, 960>},
{<Bob, 360>},
{<Meow, 955>}

OCR error:
name → nane

Unpopular
clusters; will
be deleted.

Extraction: cluster sequence generation
OCR words in a given document come in a well-defined reading order.

We generate a sequence of cluster IDs for the text tokens in the document, by
classifying them using the clusters we found earlier.

Unclassified text tokens are excluded.

Example:

OCR sequence

<Word, X coordinate>
sequence

Cluster ID sequence Clusters for “First”, “name”,
“Last”, “name”, but not for “Alice”.

First name Alice Last name …

<First,x=10>,<name,x=52>,<Alice,x=75>,<Last,x=96>…

3, 56, 82, 7, …

Extraction: diff between the golden and input documents

Given the golden document and another input document, we look at both of their
cluster sequences, and perform a Longest Common Subsequence (a.k.a. “diff”)
calculation.

The result is a matching between “clustered” text tokens.

First
name:
Last

name:

Address:
Occupation:

First
name:
Last

name:
Date:

Address:
Occupation:

Golden doc: Input doc:Sequence diff:

Extraction: finding values

For each annotated key in the golden document:

1. Use the diff result, together with various heuristics, to find the corresponding
text tokens in the input document. We now have a “key” bounding box in the
input document.

2. Calculate the “value” box in the input document, using the offset between the
given key and value boxes in the golden document.

3. Extract OCR words from the value box in the input document.

Labeled doc: Input doc:Diff mapping of
tokens in the key

bounding box

Key → value
box offset

Diff optimizes across the full document

Words in the key box may repeat in other locations in the document.
In our example, “First name” appears twice:

The diff-based approach can overcome this difficulty, by matching word order.

Repeating sections

Sections that repeat a variable number of times in each document, and
contain key-value fields.

For example:

Given some annotations specifying the repeating section on the golden
document, we can run a modified diff algorithm to find a repeating
correspondence.

Thus, values from all iterations of the repeating section can be extracted.

Country: USA Date visited: 1985

Country: England Date visited: 2002

Evaluation

● Tested on several hundred documents (proprietary dataset).
○ Results are promising; F1 score of 0.914.

● It would be nice to have a public dataset to use for benchmarking.

Thank you

