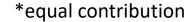
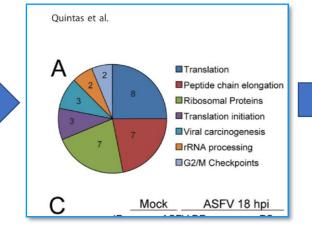
IBM Research Al


CHARTER: heatmapbased multi-type chart data extraction

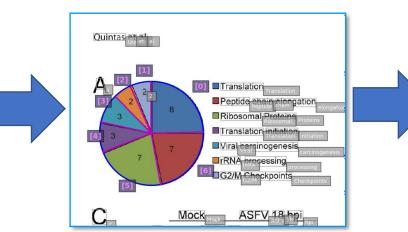
Joseph Shtok*, Sivan Harary*, Ophir Azulai, Adi Raz Goldfarb, Assaf Arbelle, Leonid Karlinsky*

IBM Research AI, Haifa Research Lab

The Second Document Intelligence Workshop at KDD 2021


Introduction

What task are we solving?


Given a document page...

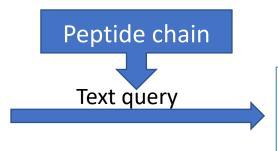
The second of the control of the con

Find a chart image in it...

Infer underlying numerical data (pie segment sizes, bar heights, graphs data)

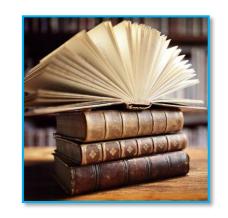
JSON output

```
"metadata": {
        "ui table boxes": {
        "bounding box": "0.0 0.0 0.3489 0.2970",
       "chart type": "pie",
       "caption": "FIG +> ASFV-DP interacts with the ce
"ui table":
"headers": {
               "0": "index",
               "1": "angle",
               "2": "value"
               "3": "text internal",
               "4": "text external"
               "5": "text_legend" }
               "1": 89.31834030953903,
               "2": 0.24810650085983064,
               "4":"Translation Peptide chain elongation
               "5": "Translation" },
               "1":23.335593776459093,
               "2": 0.06482109382349748,
               "3": "2",
               "4": "Quintas et al.",
               "5": "G2/MCheckpoints" },
                "0": 2,
               "1": 20.46750022794376,
               "2": 0.05685416729984378,
               "3": null,
               "4": null,
               "5": "IRRA processing" }
"page num": "6",
"chart id": "1".
"file name": "5709586 cc-by.pdf
```

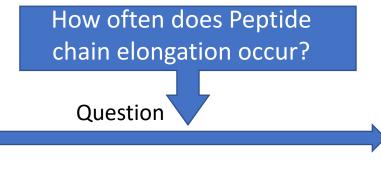


Introduction

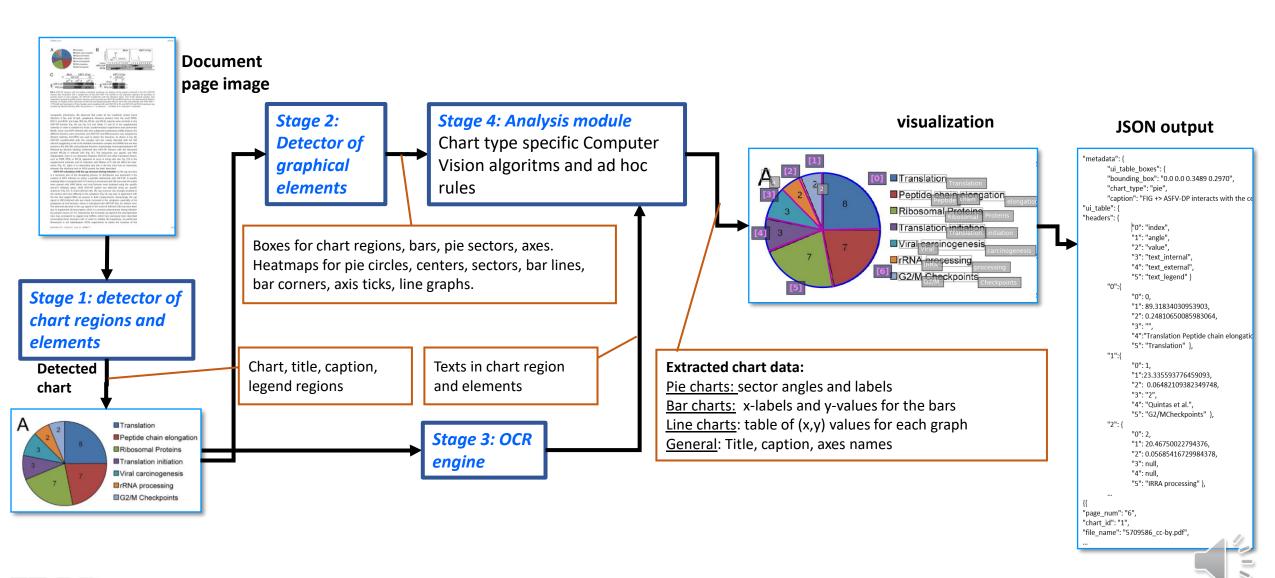
Why do we solve it?


1. To extend document search.

"Peptide chain elongation" found in chart (Fig. 4, page 6), value = 23%


3. Towards unlocking the knowledge in documents

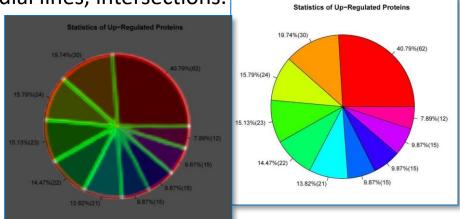
2. To extend question answering in documents



"Peptide chain elongation occupies 23% of ASFV-DP interactions

CHARTER: heatmap-based multi-type chart data extraction

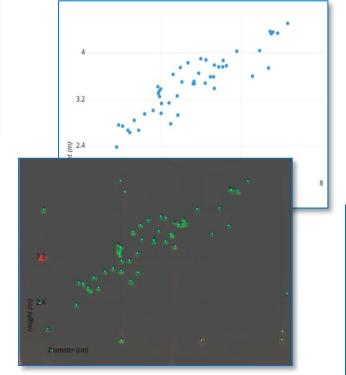
Our CHARTER processing pipeline



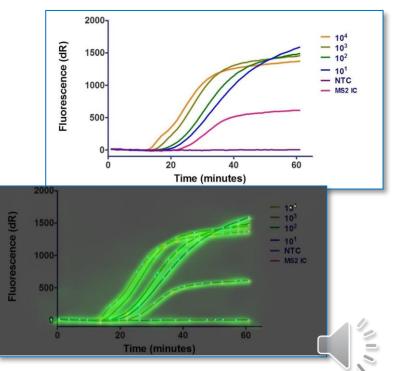
Detection of graphical elements in charts: boxes and heatmaps

Pie charts: heatmaps of the circumference, center,

radial lines, intersections.

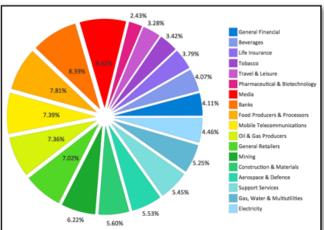


Bar charts: boxes of bars

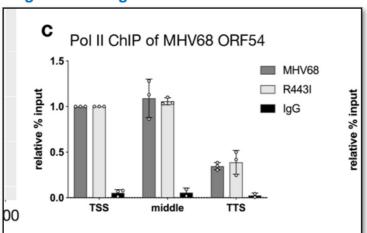


Scatter plots:

boxes/heatmaps of markers

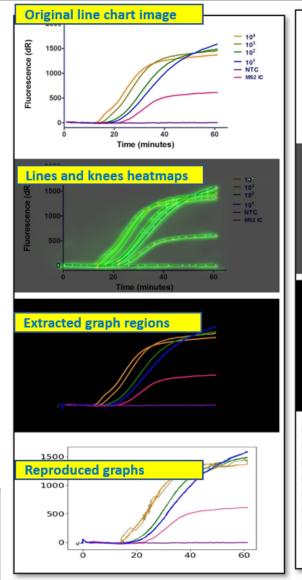

Line charts: heatmaps of lines

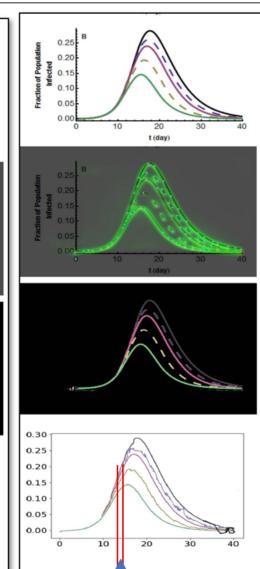
System output


Original pie chart image

Extracted data: pie sectors, legend

Legend	percent %
Beverages	4.028
Life insurance	3.500
Tobacco	3.750
Travel & Leisure	3.278
Pharmaceutical & Biotechnology	2.944
Media	7.806
Banks	8.361
Food Producers & Processors	7.222
Mobile Telecommunications	7.861
Oil & Gas Producers	7.167
General Retailers	7.000
Mining	6.000
Construction & Materials	5.806
Support Services	5.333
	5.806
Gas, Water & Multiutilities	5.500
Electricity	4.111
	4.528


Original bar image



Extracted data: Bars, title, legend, y-axis name

Title: Pol II Chip of MHV68 ORF54					
Label	legend	Relative a input			
TSS	MHV68	1.01			
TSS	R443]	1			
TSS	Igg	0.05			
middle	MHV68	1.1			
middle	R443]	1.03			
middle	lgg	0.05			
TTS	MHV68	0.33			
TTS	R443]	0.38			

X-value	Graph 1	Graph 2	Graph 3	Graph 4	Graph 5
13.4	0.1257	0.1532	0.1749	0.1901	0.1905
13.5	0.1266	0.1548	0.1761	0.1943	0.1913
13.6	0.1275	0.1561	0.1774	0.1972	0.1942
13.7	0.1283	0.1565	0.1795	0.2070	0.2075

Extracted data: sequences of values per graph

Performance

Our tests are conducted on real-world, manually annotated data of document pages, and bar/pie charts and 30 pie charts from the ICPR2020 dataset

Table 1: Detection of charts and related elements in documents

Category AP@0.5	Pie 97.8%		
Category AP@0.5	Caption 91.4%		

Stage 1 detector performance, measured as Average Precision (AP) with IoU= 0.5, averaged over 5 random train/test splits.

Table 2: Detection of graphical elements in chart image

Category	Horizontal bar	Vertical bar	Pie sector
[12]	_	80.2%	_
Ours	76.5%	90.5%	90.9%

Performance (in Average Precision (AP) with IoU= 0.5 of the graphical elements detector (box categories) on the real data.

[12] Xiaoyi Liu, Diego Klabjan, and Patrick N. Bless. 2019. Data extraction from charts via single deep neural network. arXiv (2019).

Table 3: Accuracy of bar values in extraction of tabular data

Method	A.L	A.L	E.L	E.L	E.L	E.L
ϵ	0.02	0.05	0.01	0.05	0.01	0.025
[17]	67.0%	71.0%	-	-	- 34.3 % 58.3 %	-
[12]	_	_	28.4%	32.8 %	34.3 %	38.8 %
Ours	60.0%	74.2%	31.6%	55.8%	58.3%	60.3%

E.L - exact label prediction, A.L - any labels.

Table 4: Accuracy of pie segment angles in extraction of tabular data from real-world pie charts with exact labels

Method	$\epsilon = 0.01$	$\epsilon = 0.05$	$\epsilon = 0.1$	$\epsilon = 0.25$
[12] Ours $(R_{Lev} = 1.0)$				

[17] Fangfang Zhou, Yong Zhao, Wenjiang Chen, Yijing Tan, Yaqi Xu, Yi Chen, Chao Liu, and Ying Zhao. 2021. Reverse-engineering bar charts using neural networks. Journal of Visualization 24, 2 (2021), 419–435

Thank you

Come visit us at https://www.research.ibm.com/haifa/dept/imt/cvar/index.html

