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ABSTRACT
We propose a method for extracting entities and relations from
natural language. When put together, this results in fact-triplets
of the form subject, predicate and object as knowledge units. Our
method benefits from triplet attention in addition to conventional
self-attention as a feature refinement mechanism. We do this by
explicitly facilitating contextual cues for every candidate entity span
and every subject and object pair, which are allowed to attend to each
token of the sentence besides attention between any two tokens. In
conjunction with sharing information between the two tasks and
the benefits of transfer learning, our method exhibits competitive
performance in strict evaluation, compared to the previous state-
of-the-art, with improvements up to 2.6% and 3.4% in micro and
macro-F1 for entity recognition, as well as 6.9% and 5.9% in micro
and macro-F1 respectively for relation extraction.

CCS CONCEPTS
• Computing methodologies→ Information extraction.

KEYWORDS
information extraction, multi-task learning

1 INTRODUCTION
The ability to continuously scrutinize, infer, store and retrieve
knowledge about observations from the real world characterizes
human intelligence. It enables us to build and leverage priors to
make well-informed decisions.

A similar characterization of business intelligence relies on its
ability to do the same programmatically. The diversity and vol-
ume of natural language text are rapidly increasing. As a result,
extracting knowledge from it efficiently and at scale has become
the modern workhorse of business intelligence.

The characterization of an elementary unit of knowledge is a
fact triplet, comprising

〈
subject, predicate, object

〉
. The subject and

the object are typically entities, often named and typed, and rep-
resented as nodes. The predicate is represented as a directed edge
and describes how the subject is related to the object. An example
would be

〈
Barack Obama:Person, born in, Honolulu:Location

〉
These triplets, when appropriately combined, become elemen-

tary units of a much larger data structure, known as a knowledge
graph [1]. The knowledge graph serves as a significantly rich source
of knowledge for many downstream applications, as discussed in
[13]. Every new entity and fact triplet extracted from reading natu-
ral language refines our understanding of the world by updating
the current state of the knowledge graph.

Machine learning systems have made significant strides in the
problem of joint entity recognition and relation extraction, ben-
efiting from advances in contextual representations and transfer
learning. Creative design has resulted in model architectures for
learning sufficiently discriminative representations for recognizing
typed entities and extracting the typed relations between them.

Related Work. The general framework of solutions has rapidly
evolved from pipelined sequential systems lacking in learned in-
teractions between entity recognition and relation extraction tasks
[2, 7, 25], often with dated recurrent methods [10, 12, 20]. Often,
the task performed early on in the pipeline did not benefit from the
learning process of the latter tasks, as discussed in [26, Section 2].

Recently, more nuanced transformer-based methods leverage
beneficial two-way intricate interactions between the tasks through
joint training for discriminative labeling [22, 26, 27] and auto-
regressive triplet generation [5]. As done recently in [26], our
method generates predictions for discriminatively labeling every
span as a possible entity and for labeling every pair of spans as a
possible relation.

Our work is most closely related to recent state-of-the-art [26],
which discusses the observed merits of the relation signal for recog-
nizing entities. We demonstrate improvements in the strict evalua-
tion F1 score from incorporating triplet attention in Section 3.2.1.

Contributions. Motivated by the conventional attention mech-
anism from [23], our proposal enables learning where to focus
for extracting a given fact triplet or a candidate entity span (see
Figure 1b), in its entirety as opposed to where to focus for the to-
kens individually (see Figure 1a). We call it triplet attention, and
to our best knowledge, our method is the first to study its merits
when combined with information sharing between tasks in the
joint learning paradigm.

Our findings in Section 4, particularly in Table 1 and Table 2
suggest that enabling candidate entity spans and pairs of subject
and object to attend to every token in a sentence facilitates more
explicit contextual cues for both discriminative labeling tasks. The
possible memory cost incurred can be conveniently handled using
the simple trick from [18] while preserving equivalence.

Results of our ablation study in Table 2 demonstrate the in-
cremental improvements of the triplet attention mechanism over
information sharing and its base variant.

2 PROBLEM
In our problem setup, we extract the set of all entities E, and the
set of all fact triplets R present in a sentence S. The sentence
S = {w1, . . . ,wL} is an ordered sequence of L tokens.
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An entity is extracted by classifying each triplet ⟨wi , e,w j ⟩ into
{0, 1}, wherewi andw j are the start and end tokens of a span, and
e ∈ CE is an entity type, CE is the set of all possible entity types.

Similarly, we also extract a triplet by extracting elements belong-
ing to two sets, denoted by Rh and Rt . We extract each element
of Rh by classifying each triplet ⟨wi , r ,w j ⟩ into mutually exclusive
classes 0 or 1, wherewi andw j are the head tokens of the subject
and the object, respectively, r ∈ CR is a predicate or relation type,
and CR is the set of all possible relation types. When ⟨wi , r ,w j ⟩ is
classified as 1, it implies that two entities exist, beginning withwi
andw j respectively, which are related by r .

The definition of Rt follows for the tail tokens of the subject and
object along the same lines. As done previously in [5, 7, 26], we also
assume that both the subject and object in any fact triplet present
in the ground truth, always belong to E.

A strict inference protocol is used for constructing the predicted
E and R. We first construct E, Rh , and Rt as maximum likeli-
hood estimates from the model’s output for S. This is followed by
constructing R, by including only those triplets

〈
subject, predicate,

object
〉
that agree with all of the predicted E, Rh and Rt .

Notation. Deferred to Appendix A.

3 MODEL ARCHITECTURE
Along the lines of [7, 24, 26], we designed a system that gener-
ates sufficiently discriminative features for every ⟨wi , e,w j ⟩ and
⟨wi , r ,w j ⟩, from a sentence S, used for linearly separating them
into the classes {0, 1}, as described in Section 2.

Ourmethodology involves three key stages, which are performed
upon the token level embeddings from a well-known language
model’s encoder1 such as BERT, ALBERT, SCIBERT, etc. sequentially.
The three stages are given by (1), (2) and (3).

These embeddings are first transformed into three features per
token, for entity recognition, relation extraction, and shared.

A refinement module transforms these features into highly dis-
criminative features for each element of the form ⟨wi , e,w j ⟩ or
⟨wi , r ,w j ⟩, by having the feature corresponding to each pair (i, j) ∈
[L]2 attend to every token i ∈ [L] in the sentence. Our experiments
demonstrate the advantages of incorporating this module.

In the final stage, we utilize two task heads, one for each of the
tasks corresponding to entity recognition and relation extraction,
which is nothing but a linear layer followed by a sigmoid function
trying to predict the presence or absence of ⟨wi , e,w j ⟩ or ⟨wi , r ,w j ⟩.

3.1 Task Separation
Let fS B BERT(S) ∈ RL×d where L denotes the number of tokens
in S, and d is the dimensionality of the per token embeddings
obtained from BERT [6]. We compute the following features as a
transformation of fS ,

fner = дner(fS)

fre = дre(fS)

fshared = дshared(fS) (1)

1For the rest of this paper, we will refer to this model as BERT for convenience and
ease of understanding. However, note that it is interchangeable, as shown in Section 4.
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(b) Triplet attention

Figure 1 For a sentence with three tokens, blue corresponds to query and or-
ange corresponds to attention entries for the key. Each cube in the grid can be
denoted by Att[wi ,wk ] in Figure 1a and Att[wi ,w j ,wk ] in Figure 1b repre-
sents an attention value. Consequently we have

∑3
k=1 Att[. . .,wk ] = 1. Note

the differences in the query between the two figures, where in Figure 1b each
query is associated with a pair of tokens, unlike in Figure 1a. A pair of tokens
can be a pair of either head or tail tokens of the subject and object correspond-
ing to the candidate fact triplet, for example (wh =Barack, wh =Honolulu)
or (wt =Obama, wt =Honolulu). Or it could even correspond to a pair of
head and tail tokens of a candidate entity span, for example (wh =Barack,
wt =Obama).

Where the parametrized functional form of д is as follows,

д : x ∈ Rd → tanh[Linear(TransformerEncoderLayer(x))] ∈ Rd
′

Here the TransformerEncoderLayer is as defined in [23, Section
3.1], tanh activation is as defined in [17, Section III-B] and d ′ is the
feature dimensionality, tuned for performance. Each д is respon-
sible for inducing a separation of the representation fS into task
specific features fner ∈ RL×d

′

and fre ∈ R
L×d ′ along with features

fshared ∈ R
L×d ′ shared by the two.

[26] uses a recurrent encoder network for inducing dynamic par-
titioning of neurons between entity recognition, relation extraction
and shared features. On the other hand, our proposal in (1) involves
learning three parallel encoders of fS instead. fS is the common
representation of S which is subsequently processed by дner and
дre for distilling the respective task specific discriminative features.

By providing fshared to both tasks, we are allowing the possibility
of another common representation which by itself is a distilled
version of fS through a non-linear mechanism дshared. Table 2
demonstrates improvement in performance for the joint task.

3.2 Feature Refinement
Here our goal is to design a feature refinement module which
generates discriminative embeddings as a function of fner and
fshared for entity recognition, and as a function of fre and fshared
for relation extraction.

We first construct per token features c ∈ RL×d
′

and per token
pair features c̃ ∈ RL×L×d

′

using mechanisms discussed in Appen-
dix B and use them as inputs to our triplet attention module.

3.2.1 Triplet attention. Traditionally, attention involves each
token as a query, for which we attend to all keys and obtain a
weighted average over their values. In this paper, since our focus
is on classifying elements of the form ⟨wi , e,w j ⟩ or ⟨wi , r ,w j ⟩, a
natural extension is to have each of them serve as a query, at-
tending to all tokens present in the sentence as denoted in ĉ =
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TransformerEncoderLayer(̃c, c). Here c̃ governs the query, and c
governs the key and value for the attention mechanism. The Trans-
formerEncoderLayer module here implements cross-attention in-
stead of self-attention. This enables the representations derived
for ⟨wi , e,w j ⟩ and ⟨wi , r ,w j ⟩ to directly benefit by attending to the
contextual representation of every token in the sentence2.

This is followed by a fully connected layer with ELU activation
[17, Section III-G], ĉ ← ELU (tanh (̂c)) .
The composition of the modules described in this section, as a
function of a and b are denoted by the feature refinement module
G : (a,b) ∈ RL×d

′2
→ G(a,b) ∈ RL×L×d

′

. Using this parametrized
functional form, we obtain the following

f̂ner = Gner(fner, fshared)

f̂ hre = G
h
re(fre, fshared)

f̂ tre = G
t
re(fre, fshared) (2)

where f̂ner, f̂
h
re and f̂ tre are the discriminative features required for

constructing E, Rh and Rt , as defined in Section 2, respectively.

3.3 Task Head
At this stage, we learn linear separations between features of those
⟨wi , e,w j ⟩ and ⟨wi , r ,w j ⟩ which agree with the ground truth E, Rh
andRt , and those which do not. We first define the following events
X (i, e, j) B 1{⟨wi , e,w j ⟩ ∈ E},Y (i, r , j) B 1{⟨wi , r ,w j ⟩ ∈ Rh } and
Z (i, r , j) B 1{⟨wi , r ,w j ⟩ ∈ Rt }

Pm (X (i, e, j) = 1|S) B Ĝner

(
f̂ner

)
i je

Pm (Y (i, r , j) = 1|S) B Ĝh
re

(
f̂ hre

)
i jr

Pm (Z (i, r , j) = 1|S) B Ĝt
re

(
f̂ tre

)
i jr

(3)

where Ĝ : x ∈ RL×L×d
′

→ σ (Linear(x)) ∈ [0, 1]L×L×C , C is CR
for Ĝh

re and Ĝt
re, and CE for Ĝner, σ is the sigmoid function [17,

Section III-A]. Pm is used to denote predicted distribution emitted
by the model.

4 EXPERIMENTS
Similar to [5, 7, 26, 27], we evaluated our method on multiple pub-
lic datasets. We do not train our model using a comprehensive
pre-training strategy for relation extraction. As also discussed in
Section 2, our method receives raw text S and emits both E and R.

4.1 Datasets
We conduct experiments on the WebNLG[8], SciERC[16], NYT[19]
and ADE[11] datasets. WebNLG was created for verbalizing a set
of fact triplets into freeform text. The SciERC dataset was collected
from 500 abstracts of academic publications associated with arti-
ficial intelligence and used for constructing scientific knowledge
graphs. The NYT dataset was annotated using distant supervision
with FreeBase [4], over New York Times articles. The ADE dataset
has pairs of drugs and their adverse effects marked as fact triplets.

2The space complexity here is O(L3), which can be handled through a simple trick
discussed in [18], which considerably reduces the memory bottleneck. Although the
focus of [18] is on self-attention, the method is also applicable to cross-attention.

We have the training, validation, and test splits for WebNLG,
SciERC, and NYT datasets as proposed by their respective authors.
For ADE, we have ten training and test sets, of which 15% of the
training set is used to construct the validation set for each fold.

4.2 Training
To summarize, the BERT features fS are processed in sequence as
per (1), (2) and (3). For a sentence S, the binary cross entropy loss3
for both entity recognition and relation extraction, is optimized.

Loss =
∑
i ∈[L]

∑
j ∈[L]

[ ∑
e ∈CE

l (Pm (X (i, e, j)|S) ,X (i, e, j))

+
∑
r ∈CR

l (Pm (Y (i, r , j)|S) ,Y (i, r , j))

+
∑
r ∈CR

l (Pm (Z (i, r , j)|S) ,Z (i, r , j))
]

(4)

Here l corresponds to the binary cross-entropy loss. To prevent
overfitting, we employ dropout [21] of 0.1, for fS in Section 3.1, as
well as the outputs of G in (2).

The model is trained for 100 epochs on the training split, using
the Adam optimizer [14]. Four Tesla P40 GPUs on a single node
were used to train our models in a data-parallel setting. To conform
with the experiment setup in [26], we have also leveraged the
following pre-trained encoders as candidate backbone encoders for
generating fner, fre and fshared; BERT (bert-base-cased, [6]) for
experiments on the WebNLG and NYT datasets, ALBERT (albert-
xxlarge-v1, [15]) for the ADE dataset, and SCIBERT (scibert-
scivocab-uncased, [3]) for SciERC dataset.

4.3 Evaluation
As also done in [26], the sum of the micro-F1 score [9] of both entity
recognition, and relation extraction is monitored for all three splits
after every epoch. Finally, the monitored criterion on the test split,
corresponding to the best criterion value on the validation split, is
reported as the model performance.

Furthermore, we do this for the ten-fold cross-validation on the
ten splits available in the ADE dataset. In addition we also monitor
the macro-F1 score [9] for ADE, as done in [26]. The average micro
and macro-F1 on the test sets, is reported for ADE. Note that the
macro-F1 for relation extraction is the same as the micro-F1, as
expected when only one relation type exists. For consistency, our
evaluation scripts are borrowed from the implementation of [26].

Our baselines were selected to represent the recent state-of-the-
art in joint entity recognition and relation extraction. [5] is an
autoregressive relation extraction method involving large-scale
pre-training on the distantly supervised REBEL dataset for relation
extraction, systematically cleansed using a state-of-the-art natural
language inference model. Table 1 provides comparisons with two
versions, of which REBEL does not involve the pre-training.

[22] argues against the ordering requirement for seq2seq meth-
ods and proposes an encoder-decoder framework for predicting
all fact triplets at once, demonstrating competitive performance.
[27] incorporated relations between two spans by modeling the

3−y logд(y |x ) − (1 −y) log (1 − д(y |x )) where y ∈ {0, 1} is the ground truth label
and д(y |x ) is the model’s predicted probability for the class y.
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Method
WebNLG SciERC NYT ADE

NER RE NER RE NER RE NER RE
REBEL [5] - - - - - 91.8 - 81.7
REBELpre−traininд [5] - - - - - 92.0 - 82.2
PFN [26] 98.0 93.6 66.8 38.4 95.8 92.4 (91.3) (83.2)
SPN [22] - 93.4 - - - 92.5 - -
PL-Marker [27] - - 69.9 41.6 - - - -
Our Method 98.2 94.2 72.5 41.8 95.3 91.3 94.5 (94.7) 89.1 (89.1)

Our Method - best baseline +0.2% +0.6% +2.6% +0.2% -0.5% -1.2% _ (+3.4%) +6.9% (+5.9%)
Table 1 Our method demonstrates competitive performance in terms of micro-F1 for both entity recognition (NER) and relation extraction (RE) against all other
baselines representing recent state-of-the-art on different public datasets. The scores enclosed within brackets for the ADE dataset correspond to the macro-F1
scores, along the lines of [26]. The first and second bestmethods in each column are in bold and underlined respectively. This reinforces the benefit of information
sharing between the two tasks of NER and RE combined with triplet attention in Section 3.2.1.

relationships between the subject and object pairs for every subject
with significant improvement in micro-F1.

Our method is most closely related to [26] in motivation and
setup of the task, which proposes mechanisms for sharing informa-
tion through dynamic neuron partitions in the multi-task setting.
We propose an alternate information-sharing mechanism as de-
scribed in Section 3.1, which in conjunction with triplet attention,
demonstrates benefits in both entity and relation extraction tasks.

The predicted E and R are constructed from the model, as de-
scribed in Section 2. For this purpose, the maximum likelihood esti-
mates from the model are used as predictions for every ⟨wi , e,w j ⟩

and ⟨wi , r ,w j ⟩.

Method
WebNLG SciERC
NER RE NER RE

Base 97.6 93.1 71.3 35.0
Base + 1 97.9 93.5 71.2 36.5
Base + 1 + 2 (Our Method) 98.2 94.2 72.5 41.8

Table 2 Ablations over different variations of the architecture discussed in
Section 3 are presented. Base denotes Section 3 with the exclusion of both the
fshared in (1) as well as the use of triplet attention Section 3.2.1. Base + 1 incor-
porates fshared in (1) and Base + 1 + 2 also incorporates the triplet attention.
There is evidence of merit in incorporating both 1 and 2.

4.4 Results

Comparison with baselines. As seen in Table 1, our method out-
performs the baseline approaches in micro-F1 for both entity recog-
nition and relation extraction on the WebNLG, SciERC, and ADE
datasets. The bottom row provides the improvement in F1 scores
by comparing our method with the best baseline. The performance
is marginally inferior, for the distantly supervised NYT dataset,
warranting further investigation.

The baselines [5, 22, 26, 27] have been selected to cover the recent
state-of-the-art methods for entity recognition and relation extrac-
tion for every dataset. Our method also demonstrates significant
improvement in macro-F1 for entity recognition for ADE.

Ablation study.We evaluate the merits of the additional feature
sharing fshare in Section 3.1 as well as the triplet attention mech-
anism in Section 3.2.1 by incrementally including them into the
architecture, denoted by Base + 1 and Base + 1 + 2 respectively.

The inclusion of fshare denoted by Base + 1 in Table 2, shows
merit in both relation extraction for both WebNLG and SciERC, as
well as in entity recognition for WebNLG. Note that, the absence
of this feature does not imply that there is no information sharing.
In fact the generated fS is also a shared representation that gets
refined into fner, fre and through the subsequent modules. We also
find it noteworthy, that the results for both Base and Base + 1 are
not widely away from the recent state-of-the-art enlisted in Table 1.

This in conjunction with the triplet attention, denoted by Base +
1 + 2, demonstrates significant improvements in the micro-F1 score
for both entity recognition and relation extraction.

5 CONCLUSION
We propose a new task unit by enabling the explicit recognition of
contextual cues for every candidate entity span and pairs of candi-
date entities over all tokens in a sentence. When applied generically
for joint entity recognition and relation extraction, our method
exhibits competitive performance against recent state-of-the-art
methods for different public datasets. It also remains to be seen if
our method benefits from large-scale pre-training as done in [5].
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A NOTATION
We denote the statement, x is defined to be equal to y, by the ex-
pression x B y. Furthermore, for any n ∈ Z+, [n] B {1, 2, . . . ,n}.
For d ∈ Z+, k ∈ Z+, Rdk B Rd × . . . k times . . .×Rd . For two ten-
sors A and B, with identical shape until the penultimate dimension,
[A;B] is the concatenation of B after A along the last dimension.
The expression x ← y implies that the result of the expression y on
the R.H.S. is assigned to the variable x on the L.H.S., and is used for
reducing excessive variables by enabling their reuse. 1 represents
the indicator function. P is used to denote probability.

B FEATURE CONSTRUCTION MECHANISMS
FOR SECTION 3.2

Motivated by ideas from [26], we first propose and evaluate a naive
and generic mechanism as follows:

c ← д̃ ([a;b]) (5)

where д̃ : (x,y) ∈ Rd
′2
→ tanh (Linear ([x ;y])) ∈ Rd

′

, a ∈ RL×d
′

and b ∈ RL×d
′

.
Motivated by the strategy for generating overall features in [26],

we then implement a maxpooling layer for generating the overall
features cglobal ∈ Rd

′

as

cglobal = maxpool
(
c(1), c(2), . . . , c(L)

)
. (6)
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Finally the representations c̃(i, j) ∈ Rd
′

which could generically
apply to either ⟨wi , e,w j ⟩ or ⟨wi , r ,w j ⟩ are given by

c̃(i , j) = д̂
(
c (i ), c (j ), cglobal

)
(7)

where д̂ : (x,y, z) ∈ Rd
′3
→ tanh (Linear ([x ;y; z])) ∈ Rd

′

.
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